Космологические коаны. Путешествие в самое сердце физической реальности - Каганова Инна 2 стр.


И обе возможности – мгновения нулевой длительности или конечной длительности – заведут нас в тупик.

Предположим, интервал имеет строго нулевую длительность, то есть ничто не может происходить в течение этого временного интервала. Тогда в течение этого интервала стрела будет находиться только в одном определенном месте. Она зависнет в воздухе. Но если она действительно в течение этого периода находится только в этом одном месте, она, вероятно, не сможет сдвинуться в течение этого интервала, как не может сдвинуться на фотографии ее изображение. Движение подразумевает перемещение из одного места в другое, но в этот момент стрела находится только в одном месте. Теперь проблема ясна: если время есть цепь связанных друг с другом моментов, а стрела в любой момент неподвижна в пространстве, тогда как она вообще может куда-то долететь?

Этот способ рассуждений мог бы убедить нас в правильности альтернативного предположения: то, что мы называем мгновением, может иметь какую-то продолжительность, но это дискретная и неделимая величина, похожая на кадры, следующие друг за другом и образующие кино. С этой точки зрения мы представляем себе полет стрелы как кинофильм, в котором положение стрелы меняется при переходе от одного кадра к другому. Только когда кадры следуют друг за другом, они создают ощущение движения. Но если начинаешь задумываться глубже, то понимаешь, что эта аналогия не проясняет картину. Кадры, составляющие кино, разделены долей секунды, а в нашем сознании они сшиваются воедино, образуя движение. Что способно сшить друг с другом атомы времени? Фильм можно прокрутить на разных скоростях, а можно вообще остановить пленку в кассете. Если мир устроен подобно прокручиваемой кинопленке, то кто показывает это кино и на какой скорости? Что мешает всему совершиться одномоментно? И как один кадр соединяется со следующим? В кино стрела в одном кадре может находиться в определенном положении, но затем оператор переводит камеру – и в следующем кадре мы видим уже цель, в которую направлена стрела. А в реальности этого никогда не происходит, и кажется, что каждый следующий, неумолимо наступающий момент, плавно вытекает из предыдущего.

Короче, как может происходить движение, если время состоит из моментов и в каждом из них движения нет? Этот парадокс (как и многие другие) был сформулирован уже 2500 лет назад Зеноном Элейским, о чем рассказали Платон в своем диалоге «Парменид» и Аристотель в своем трактате «Физика». Этот парадокс и в самом деле может вас обескуражить. И если так и произойдет, то это будет правильно! Если же вы, что вполне возможно, не увидите здесь серьезной проблемы, то я посоветую вам подумать еще. А вот если вы ощутите неодолимое желание задуматься о чем-нибудь другом – не поддавайтесь ему! И уж тем более не отмахивайтесь от этой проблемы как от уже решенной или как от «чисто философской зауми», потому что это будет похоже на то, как если бы вы прошли мимо узкой заросшей тропинки в лесу и не выяснили, куда именно она ведет. На самом деле парадоксы Зенона, охарактеризованные Бертраном Расселом как «неизмеримо тонкие», чрезвычайно проницательные мыслители обдумывали и разгадывали в течение двух тысячелетий – и находили решение, снова и снова, и каждый раз другое!

Итак, предметы движутся, стрела летит. И теперь человечество знает о самой природе движения гораздо больше, чем знали о нем во времена Аристотеля. Мы можем предсказать час и минуту любого затмения на 50 лет вперед или нацелить космический корабль настолько точно, что он спустя годы совершит маневры вокруг Юпитера и приблизится к Нептуну. Мы понимаем о движении достаточно, чтобы описать его во многих ситуациях с удивительной точностью. И как же в таком случае наша поразительно точно описывающая движение физика объясняет парадокс Зенона со стрелой?

Рассмотрим скорость стрелы. Если стрела преодолевает расстояние 100 метров за одну секунду, мы можем сказать, что она движется со средней скоростью 100 метров в секунду (м/сек). Однако если приглядеться повнимательнее, то обнаруживается, что во время второй половины движения стрела летит медленнее и пролетает меньшее расстояние, поскольку трение о воздух в процессе движения замедляет ее. Возможно, она пролетает 55 метров в первую половину секунды и 45 во вторую. Возможно, в интервале между 0,1 секунды и 0,2 секунды своего полета, то есть за 0,1 секунды, стрела пролетит 12 метров, следовательно, скорость ее в этом интервале времени составит 12 метров / 0,1 секунды = 120 м/сек.


Зависимость истекшего времени от расстояния, которое пролетела стрела Зенона-Муненори.


Во многом физика в знакомом нам виде родилась тогда, когда Исаак Ньютон и Готфрид Лейбниц разработали математический аппарат, позволивший довести эту проблему до логического завершения. Чтобы проиллюстрировать их интерпретацию движения, отложим на рисунке выше положение стрелы (в данном случае ее расстояние от выпускающего стрелу Муненори) в последовательные моменты времени. Ваш глаз измеряет эти положения, а время отсчитывается в вашем сознании, но все это делается очень приблизительно. Мы можем вообразить, что делаем измерения с гораздо большей точностью, – например, с помощью лазерной рулетки и атомных часов. В любом случае, сделав счетное число измерений, мы можем нарисовать гладкую кривую, которая точно описывает движение стрелы. Используя эту кривую, мы можем оценить, какие расстояния стрела пролетает за все более короткие интервалы времени.

Эта основная идея была понятна уже Аристотелю, но Ньютон и Лейбниц сделали решающий шаг и поняли, что случится, если интервал[6] Δt приближается к нулю, то есть к интервалу, о котором говорится в парадоксе Зенона. Они смогли показать, что, как и следовало ожидать, в течение этого бесконечно малого интервала времени приращение расстояния Δd стремится к нулю так же, как и Δt. Однако оказалось, что можно совершенно строго и математически точно доказать, что отношение Δd / Δt – скорость – стремится к определенному ненулевому значению. Этот математический метод, который составляет основу дифференциального исчисления, разрешает парадокс Зенона. Из него следует, что нельзя устремлять длительность интервала времени к нулю, не устремляя в то же самое время к нулю расстояние, преодолеваемое за это время, и если вы сделаете все правильно, скорость стрелы никогда не окажется равной нулю. Неважно, насколько короток интервал: стрела никогда не останавливается. Нет такого понятия как интервал времени, в течение которого стрела совсем не движется, – следовательно, исчезает как исходная предпосылка парадокса Зенона, так и необходимость обдумывать концепцию «атомов времени».

Парадокс объяснен? Возможно. Этот метод рассмотрения движения работает очень хорошо, и мы могли бы, если б захотели, просто оставить все как есть. Но физика – как и мир, который она описывает, – материя глубокая и тонкая, с секретными тропинками и потайными комнатами, так что нужно только толкнуть правильную дверь. Поэтому давайте зададимся несколькими вопросами о движении стрелы к своей цели по кривой траектории, описание которого кажется таким ясным.


Почему она летит именно по этой, а не по какой-либо другой траектории? Эта же стрела, если ее в одних и тех же условиях с одинаковым усилием выпускать опять и опять, полетит по той же самой траектории. Почему? И что именно выделяет именно эту траекторию из всех возможных траекторий, по которым она может лететь? (Способны ли вы вообразить, что стрела в действительности будет лететь по разным траекториям, образующим при усреднении одну прямую траекторию, которая только кажется изогнутой?)

Как в определенный момент времени стрела «узнает», по какой траектории нужно лететь? В этот момент она находится в определенном положении, но ее скорость зависит от того, где она была в предыдущий момент. Может стрела «помнить», где она была? Или ее скорость является присущим ей свойством – таким, например, как цвет? Почему стрела обладает инерцией, которая поддерживает ее движение в направлении ее скорости, но меняет направление так, чтобы следовать по предназначенной ей траектории?

Что случится, если мы попытаемся точно просчитать скорость стрелы в определенный момент времени, измерив пройденное ею расстояние Δd за бесконечно малый интервал времени Δt? В реальных условиях точные измерения провести невозможно, так что мы никогда не измерим точно ни Δd, ни даже Δt, и когда Δt приближается к нулю, скорость Δd/Δt становится совершенно неопределенной. Что мы будем с этим делать? Имеет ли вообще смысл воображать себе сколь угодно малые интервалы времени, если мы ничего не можем узнать о движении, происходящем в течение этих интервалов? Что вообще значит измерение скорости объекта? (Поверите ли вы в то, что так же как скорость объекта формируется из его различных положений, так и положение объекта, в свою очередь, формируется различными скоростями?)

Какой момент отвечает моменту «сейчас» на кривой, изображающей полет стрелы (гладкой кривой на рис. на стр. 27)? Не бойтесь, укажите на любой, который вам нравится, и ни одна физическая теория не оспорит и даже не прокомментирует это утверждение. На самом деле в физике для этого понятия нет места, оно вообще не играет никакой роли. Но все же вы момент «сейчас» чувствуете мгновенно. Попробуйте, если вам захочется, вместо этого ощутить будущее или прошлое. Не сможете, правда ведь? (Или сможете?) Как же так получается, что важнейшее свойство нашего личного опыта не находит отражения в физике?

Стрела состоит из неисчислимого количества связанных друг с другом атомов, которые все вместе участвуют в процессе, называемом нами «полет стрелы». Из чего сделаны атомы? Вы можете ответить: «Из кварков и электронов» или «Из суперструн». Но как бы ни назывались мельчайшие частицы, я утверждаю, что современная физика считает, что они, в свою очередь, состоят из информации. Значит, и стрела сделана из информации? Да! Но информации о чем? Известной кому или чему? И как информацию можно вставить в лук, оттянуть с тетивой назад и отпустить? И как она может пролететь по воздуху и поразить ваше сердце?


Эти вопросы можно задать очень быстро, всего за несколько сотен биений сердца. А вот для того, чтобы полностью осознать их, не говоря уж о том, чтобы дать на них ответы, времени потребуется куда больше. Так что тронемся в путь. Стрела приближается.

2. Отплытие

(Венеция, 1610 год)

Шестьсот миллионов биений сердца назад[7]…

Над портом навис густой туман, отплытие откладывалось, и это, казалось, длилось бесконечно. Отважиться на такое безумное путешествие было непросто, но решение уже принято и тебе не терпится поскорее отправиться в путь. Ты уныло смотришь вокруг, разглядывая другие суденышки, выплывающие из тумана и растворяющиеся в нем.

Когда соседний корабль скользит мимо тебя к причалу, твое сердце замирает – тебе на мгновение кажется, что твой корабль наконец-то отплывает. Поражаясь своему нетерпению, ты понимаешь, что ошибся. Да когда же начнется это долгожданное путешествие?!

Но вот ты и в самом деле уже на пути к исламским империям и легендарным восточным королевствам, расположенным к востоку от них. Ночью ты очнулся от сна и ощутил, что в каюте как-то слишком тихо. Может, ветер утих? Или ты утонул и находишься на том свете? Не в силах уснуть от предвкушения приключений, ты поднимаешься на палубу и к своему удивлению видишь, что корабль плавно, но быстро движется по спокойной морской глади, подгоняемый легким ветерком.

Ты поражен: как это тебя угораздило спутать корабль, мчащийся под парусом, с кораблем, стоящим на якоре? Значит, ты не сумел отличить движение от покоя?

Возможно, ты подумаешь, засмотревшись на мерцающие звезды: а вдруг весь мир (с тобой вместе) мчится с невообразимой скоростью сквозь пространство? Узнаешь ли ты об этом когда-нибудь?

Ты затаился… под палубами большого корабля… пока его движение плавное, без рывков и остановок, корабль может плыть с любой скоростью, и ты не заметишь никакой разницы.

Галилео Галилей «Диалог о двух главнейших системах мира»[8]

В данный момент, поскольку Земля вращается вокруг своей оси, мы вращаемся вокруг ее центра со скоростью порядка 1000 километров в час (км/час). Земля вращается вокруг Солнца со скоростью примерно 108000 км/час, или около 30 км /сек. В свою очередь Солнце вращается вокруг центра нашей Галактики – Млечного пути – со скоростью 220 км/сек, а наша Галактика несется в межгалактическом пространстве с почти вдвое большей скоростью[9]. В настоящий момент мы в буквальном смысле мчимся сквозь вселенную со скоростью около 1000 махов: такой скоростью кого угодно можно доставить в любую точку Земли меньше, чем за минуту. Вы ощущаете эту скорость?

Нет, не ощущаете, как не ощущаете движения плавно скользящего в воздухе со скоростью 1000 км/час самолета (очень медленного по отношению к приведенным выше скоростям), когда, сидя в нем, потягиваете свой коктейль. И вспомните еще моменты смятения, связанные с автомобилем, когда вы никак не можете понять, что происходит: это вы едете вперед – или ваш сосед сдает назад? Вы наверняка замечали эту странность нашего мира, но скорее всего не слишком о ней размышляли. А если все же поразмышлять?

Сначала определим условия опыта, подобно тому, как сделал это Галилей в своем знаменитом «Диалоге»: если мы внутри закрытой каюты корабля, тогда наши наблюдения – в той мере, в какой они ограничены пространством внутри каюты (причем наружу мы не выглядываем), – одинаковы, они не зависят от того, стоит ли корабль на якоре или движется с любой постоянной скоростью в любом направлении[10]. На основании этих наблюдений у нас появляется дилемма.

Во-первых, возможно, мы недостаточно внимательно проводили наблюдения и с помощью более точного эксперимента нам удастся понять, что мы движемся. Например, мы можем принять как постулат, что у детей имеется специальное чувство, которое позволяет им засыпать, когда судно разгоняется до скорости больше 100 км/час, и просыпаться, когда скорость его падает ниже этой величины. Но это, конечно, чепуха. Это крохотные добавки к скорости 108000 км/час, с которой мы движемся вокруг Солнца, так что непонятно, как ребенок может почувствовать эту дополнительную скорость, однако не чувствовать ту, с какой мы вращаемся вокруг Солнца. (По-видимому, на младенцев оказывают снотворное действие шум мотора или вибрация.) Более того: в ходе невероятно точных лабораторных экспериментов, проводившихся в течение более ста лет, не удалось найти ни одного эффекта, который бы позволил распознать абсолютную скорость нашего движения.

Так что выберем-ка мы другой путь и просто постулируем, что нет никакого способа зарегистрировать абсолютно равномерное движение. Но если оно принципиально не регистрируется, то не стоит ли нам просто отбросить идею об абсолютном движении? Естественно, двигаться мы можем, что легко доказать, просто сделав это. То есть концепцию движения как такового мы должны оставить, но только – движения относительно чего-то. Другими словами, два человека могут совершенно справедливо иметь разные точки зрения относительно того, движется данный объект или нет. Но они определенно согласятся в том, что два объекта движутся друг относительно друга. Побочным следствием этой относительности движения будет то, что вы всегда можете считать, будто не двигаетесь, даже если это значит, что множество других предметов движется относительно вас. В этом смысле каждый наблюдатель несет на себе своего рода «систему координат», относительно которой все остальное можно рассматривать как движущееся или покоящееся. Звучит несколько эгоцентрично, но поскольку не существует абсолютной системы координат, каждый имеет право воспользоваться собственной системой. Посмотрим теперь, куда эта «относительность» нас приведет.

Назад Дальше