Квантовая механика подсказывает, что все несколько иначе. Можно измерить значения координаты или скорости электрона (но только по отдельности), и если мы окажемся по-настоящему аккуратными и талантливыми экспериментаторами, то получим ответы. Но то, что предстанет перед нами в результате такого измерения, не есть точное, полное, объективное состояние электрона. Действительно, те конкретные результаты измерений, которые мы получим, нельзя предсказать с полной уверенностью, и в этом отношении квантовая механика разительно отличается от классической. Лучшее, что получится сделать, это предсказать, с какой вероятностью мы увидим электрон в любом конкретном месте или двигающимся с конкретной скоростью.
Следовательно, классическое представление о состоянии частицы, «ее координате и скорости» в квантовой механике заменяется чем-то совершенно не вписывающимся в наш обыденный опыт: облаком вероятностей. Для электрона в атоме это облако более плотное ближе к центру и рассеивается по краям. В максимально плотной области вероятность встретить электрон является наивысшей: там, где облако становится разреженным практически до полного исчезновения, вероятность встретить электрон также исчезающе мала.
Такое облако часто называют волновой функцией, поскольку оно может колебаться подобно волне, по мере того как со временем изменяется наиболее вероятный результат измерения. Волновая функция обычно обозначается греческой буквой «пси» (Ψ). Для каждого возможного результата измерения, например координаты частицы, волновая функция позволяет присвоить конкретное число, называемое амплитудой, связанной с данным результатом. Так, амплитуда, с которой частица может оказаться в конкретной точке x
0
x0
Вероятность получить такой результат при измерениях равна квадрату амплитуды.
Вероятность конкретного результата = |Амплитуда данного результата|
2
Это простое отношение называется правилом Борна в честь физика Макса Борна[2]. Часть стоящей перед нами задачи – разобраться, откуда в мире взялось такое правило.
Совершенно определенно следующее: мы не утверждаем, что есть электрон, обладающий некоторой координатой и скоростью; мы попросту не знаем этих значений, и эта наша неосведомленность как раз заключена в волновой функции. В этой главе мы ничего не говорим о том, что «есть», а отмечаем лишь то, что мы наблюдаем. В следующих главах я вообще стану упирать на то, что волновая функция – это и есть истинная сумма свойств реальности, а такие идеи, как скорость и координата электрона, – всего лишь характеристики, которые мы в силах измерить. Но не все разделяют эту точку зрения, поэтому пока постараемся сохранять беспристрастность.
⚪ ⚪ ⚪
Давайте сопоставим правила классической и квантовой механики и сравним их. Состояние классической системы описывается координатами и скоростью всех движущихся в ней элементов. Чтобы проследить ее эволюцию, представим себе примерно следующую процедуру:
Правила классической механики
1. Подготавливаем систему, фиксируя конкретные координаты и скорость для каждой из ее частей.
2. Следим за эволюцией системы в соответствии с ньютоновскими законами движения.
Вот и все. Дьявол, естественно, в деталях. В некоторых классических системах движущихся элементов очень много.
В свою очередь, в типичном учебнике по квантовой механике описание правил дается в двух частях. В первой части имеем структуру, строго эквивалентную той, что представлена в классическом случае. Квантовые системы описываются волновыми функциями, а не координатами и скоростями. Точно как в классической механике ньютоновские законы движения управляют эволюцией состояния системы, в квантовой системе есть уравнение, описывающее, как эволюционирует волновая функция. Оно называется уравнением Шрёдингера. Уравнение Шрёдингера можно сформулировать так: «Скорость изменения волновой функции пропорциональна энергии квантовой системы». Чуть более строгая формулировка такова: волновая функция может описывать состояния с различными энергиями, и, согласно уравнению Шрёдингера, высокоэнергетические части волновой функции эволюционируют стремительно, а низкоэнергетические – очень медленно. Что, если подумать, вполне логично.
Для наших целей важно лишь то, что существует уравнение, позволяющее спрогнозировать, как волновые функции гладко[3] эволюционируют с течением времени. Эта эволюция столь же неизбежна и предсказуема, как и движение тел в соответствии с законами Ньютона в классической механике. Пока – ничего экстраординарного.
Правила квантовой механики (часть первая)
1. Подготавливаем систему, фиксируя конкретную волновую функцию Ψ.
2. Далее система эволюционирует согласно уравнению Шрёдингера.
Пока все нормально – эти элементы квантовой механики строго соотносятся с их классическими предшественниками. Вот только правила классической механики на этом заканчиваются, а в игру вступают дополнительные правила квантовой.
Все эти дополнительные правила связаны с измерением. Измеряя, например, спин или координату частицы, мы, согласно квантовой механике, в любом случае получим лишь определенные, возможные в данном случае результаты. Конкретный результат спрогнозировать не выйдет, но можно рассчитать вероятность получения каждого из возможных результатов. После того как измерение будет выполнено, волновая функция коллапсирует, превращаясь в совершенно новую функцию, в которой все вероятности сконцентрированы вокруг именно того результата, который вы только что получили. Таким образом, измеряя квантовую систему, максимум, на что вы можете рассчитывать – это возможность спрогнозировать вероятность различных ее результатов. Но если вы сразу повторите измерение той же самой величины, то раз за разом будете получать один и тот же результат – волновая функция сколлапсировала в него.
И вот самый сок нашего разбора.
Правила квантовой механики (часть вторая)
3. Существуют определенные наблюдаемые величины, которые по желанию можно измерить, – например координата частицы. По итогам измерения ее координаты мы получим вполне определенный результат.
4. Вероятность получения любого конкретного результата вычисляется исходя из волновой функции. Волновая функция связывает амплитуду с каждым из возможных результатов измерения; вероятность любого результата есть квадрат амплитуды волновой функции.
5. После измерения волновая функция коллапсирует. Как бы ни был широк разброс ее значений изначально, после измерения все ее значения концентрируются в области того результата, который мы получили при измерении.
В рамках современного университетского курса студенты при первом знакомстве с квантовой механикой изучают ту или иную версию пяти этих правил. Идеология, лежащая в основе такой подачи материала, – считать измерение фундаментальным процессом, полагая, что коллапс волновой функции происходит вместе с актом наблюдения, и не задавать вопросов о том, что при этом происходит «за кулисами». Такой подход иногда называют копенгагенской интерпретацией квантовой механики. Но ученые, в том числе копенгагенские физики, предположительно сформулировавшие такую интерпретацию, расходятся во мнениях о том, что же на самом деле должно обозначаться этим термином. Так что мы можем считать копенгагенскую интерпретацию просто «хрестоматийной трактовкой квантовой механики».
Стоит ли говорить, что идея, будто эти правила и отражают истинное устройство реальности, кажется возмутительной.
Что именно понимается под «измерением»? Из чего именно состоит «измеритель»? Тождествен ли такой «измеритель» человеку, то есть обязательно ли наличие сознания, чтобы он сработал, либо достаточно всего лишь способности кодировать информацию? Либо «измеритель» просто должен быть макроскопическим и если так – то насколько? Когда именно происходит акт измерения и насколько быстро? Почему мир устроен так, что волновая функция коллапсирует настолько резко? Если бы волновая функция была распределена в очень большом объеме пространства, то могла бы она сколлапсировать быстрее скорости света? А что происходит со всеми теми возможностями, которые, казалось бы, допускаются волновой функцией, но которых мы не наблюдаем? Они что, вообще не существовали или исчезли, превратившись в ничто?
Сформулирую предельно кратко: почему квантовые системы эволюционируют гладко и детерминированно, по уравнению Шрёдингера, пока мы на них не смотрим, но при взгляде на происходящее со стороны сразу коллапсируют? Как они узнают о наблюдении и почему наблюдение в данном случае так важно? (Не волнуйтесь, на все эти вопросы мы попробуем ответить.)
⚪ ⚪ ⚪
Большинство из нас полагает, что наука стремится понять окружающий мир. Мы наблюдаем, что происходит вокруг нас, а наука пытается дать объяснение происходящему.
Квантовая механика, если понимать ее в современной академической формулировке, в этом не преуспела. Мы не знаем, что происходит; по крайней мере, в сообществе профессиональных физиков согласия по этому вопросу нет. Вместо этого у нас есть готовый рецепт, который мы снова и снова записываем в своих учебниках, предлагая его студентам. Исаак Ньютон, зная координату и скорость камня, подброшенного вверх в гравитационном поле Земли, мог бы сказать вам, по какой траектории полетит этот камень. Аналогично, если у нас есть квантовая система, подготовленная определенным образом, правила квантовой механики подскажут нам, как будет меняться волновая функция с течением времени и какова будет вероятность получить при измерениях те или иные результаты, если мы решим эту функцию наблюдать.
Тот факт, что квантовый подход дает нам лишь вероятности, но не определенности, может кого-то раздражать, но с этим можно научиться жить. По-настоящему нас беспокоит (или должно беспокоить) то, что мы понятия не имеем, что именно происходит.
Представьте себе, что некий коварный гений выяснил все законы физики, но не стал открывать их всему миру, а запрограммировал компьютер, чтобы тот отвечал на вопросы по конкретным физическим задачам, после чего этот гений создал интерфейс для работы с программой через веб-страницу. Каждый заинтересованный пользователь может просто перейти на сайт, ввести хорошо сформулированный вопрос по физике и получить верный ответ.
Естественно, такой программой активно пользовались бы ученые и инженеры. Но доступ к этому сайту не означает, что мы понимаем законы физики. У нас есть оракул, задача которого – давать ответы на конкретные вопросы, но сами мы лишены даже малейшего представления об основополагающих правилах этой игры. Все остальные ученые в мире, у которых в распоряжении оказался бы такой оракул, не спешили бы заявлять о победе: они продолжали бы упорно работать, выясняя, каким именно законам подчиняется природа.
Квантовая механика в той форме, в которой она сегодня дается в учебниках по физике, – это оракул, а не по-настоящему понятая наука. Мы можем ставить конкретные задачи и находить на них ответы, но, честно признаться, не можем объяснить, что происходит «за кулисами». Что у нас действительно есть – так это ряд хороших идей о том, что бы это могло быть, и физическому сообществу давно пора бы начать относиться к ним серьезно.
2
Смелая формулировка
Аскетичная квантовая механика
Отношение к проблеме, которое насаждается на страницах современных учебников по квантовой механике, емко сформулировал физик Н. Дэвид Мермин: «Заткнись и считай!» Сам Мермин не отстаивает такую позицию, чего не скажешь о других. Каждый уважающий себя физик проводит немало времени за математическими расчетами, как бы он ни относился к основам квантовой механики. Так что предыдущее назидание можно сократить до «Заткнись!»[4].
Так было не всегда. На то, чтобы собрать квантовую механику по кусочкам, ушли десятилетия: свою современную форму она обрела примерно в 1927 году. Тогда в Бельгии прошел V Международный Сольвеевский конгресс, на котором собрались ведущие физики мира, чтобы обсудить статус и значение квантовой теории. К тому времени экспериментальные доказательства уже были ясны, и физикам не терпелось дать количественную формулировку правил квантовой механики. Пришло время закатать рукава и выяснить, что же служит причиной именно такого устройства этого безумного нового мира.
Дискуссии, проходившие на этой конференции, помогают понять контекст, но мы здесь не ради исторического экскурса. Мы хотим понять физику. Поэтому наметим логический путь, который приведет нас к полноценной научной теории квантовой механики. Никакого зыбкого мистицизма, никаких, казалось бы, взятых с потолка правил. Лишь простой набор предположений, которые приведут нас к впечатляющим выводам. Если держать в уме такую картину, то многие вещи, которые в иной ситуации показались бы зловеще таинственными, начинают обретать смысл.
⚪ ⚪ ⚪
Сольвеевский конгресс вошел в историю как мероприятие, с которого началась знаменитая серия дебатов между Альбертом Эйнштейном и Нильсом Бором относительно того, как следует воспринимать квантовую механику. Бор – датский физик, обосновавшийся в Копенгагене, по праву считается крестным отцом квантовой теории. Он отстаивал примерно такой подход, который принят в современных учебниках: использовать квантовую механику для расчета вероятностей тех или иных результатов измерений, но не требовать от нее ничего более. В частности, не следует слишком серьезно задумываться о том, что происходит «за кулисами». Бор, заручившись поддержкой более молодых коллег, Вернера Гейзенберга и Вольфганга Паули, настаивал, что в уже имеющемся виде квантовая механика – это совершенно нормальная теория.
Эйнштейн с ним решительно не соглашался. Он был глубоко убежден, что долг физики – досконально во всем разобраться и что состояние квантовой механики в 1927 году и близко не позволяло дать удовлетворительное описание природы. Эйнштейн, у которого также нашлись сочувствующие, например Эрвин Шрёдингер и Луи де Бройль, призывал рассматривать проблему глубже, попытаться расширить и обобщить квантовую механику настолько, чтобы она превратилась в удовлетворительную физическую теорию.
Участники Сольвеевского конгресса 1927 года. Наиболее известные участники обозначены цифрами: 1. Макс Планк, 2. Мария Кюри, 3. Поль Дирак, 4. Эрвин Шрёдингер, 5. Альберт Эйнштейн, 6. Луи де Бройль, 7. Вольфганг Паули, 8. Макс Борн, 9. Вернер Гейзенберг и 10. Нильс Бор (фото из «Википедии»)
Эйнштейн и его единомышленники имели основания для осторожного оптимизма и полагали, что такая «новая улучшенная теория» вот-вот будет открыта. Всего несколькими десятилетиями ранее, в конце XIX века, физики разработали теорию статистической механики, описывавшую принципы движения больших групп атомов и молекул. Ключевым шагом в развитии этих исследований, которые проводились под эгидой классической механики (в то время квантовая механика еще не вышла на сцену), стала идея о том, что можно осмысленно рассуждать о поведении большой совокупности частиц, даже если мы в точности не знаем координаты и скорости каждой из них в отдельности. Все, что требуется знать – распределение вероятностей, описывающее, с какой вероятностью частицы могут повести себя тем или иным образом.