Карно также проанализировал, как максимизировать движущую силу, создаваемую нисходящим тепловым потоком при любой заданной разнице температур. В обычной машине такие газы, как пар, под действием тепла расширяются и толкают поршень. В идеальной машине на расширение газа расходуется вся теплота, без потерь, которые могут возникать, например, в результате утечек. (Подробнее см. в Приложении 1.)
Следуя такой логике, Карно понял, что настоящие паровые машины его времени крайне неэффективны. Карно рассчитал, что максимальная температура, которой пар достигал при расширении и толкании поршня, составляла немногим более 160 °C. Минимальная температура при конденсации составляла около 40 °C. Это значит, что паровые машины производили движущую силу при перепаде температур примерно на 120 °C. Но температура в нагревателе машины, где горел уголь, составляла более 1000 °C, а следовательно, гораздо больший перепад температур на 900 °C и больше растрачивался впустую.
И снова нам поможет водяная мельница. Представьте водопад с 10-метровым перепадом высоты. Теперь представьте водяное колесо, которое находится не у подножия водопада, а всего в метре от его вершины. Интуитивно понятно, что значительная часть мощности потока в таком случае теряется. Паровые машины теряют мощность теплового потока подобным образом.
Как это исправить? По мнению Карно, одним из способов было использование атмосферного воздуха в качестве вещества, толкающего поршень. Поскольку воздух содержит кислород, топливо может гореть и производить тепло внутри цилиндра, а не во внешнем нагревателе, как в паровой машине. Этим была бы избегнута <> большая потеря в количестве тепла, отмечает Карно. У воздуха есть и другое преимущество над паром более низкая удельная теплоемкость. Грубо говоря, это значит, что одно и то же количество теплоты может поднять температуру определенного объема воздуха на большее количество градусов, чем того же объема пара. Это, в свою очередь, подразумевает, что один и тот же тепловой поток может обеспечивать в воздушной машине больший перепад температур, чем в паровой. Таким образом эффективность повышается еще сильнее. Употребление атмосферного воздуха для развития движущей силы тепла <> обнаружит большие преимущества перед водяным паром, пишет Карно. Это предсказание исполнилось в конце XIX века, когда появился двигатель внутреннего сгорания, который сжигает бензин или дизельное топливо, чтобы поднимать температуру воздуха в своих цилиндрах значительно выше 1000°. Рудольф Дизель, который в 1893 году опубликовал свою теорию создания такого двигателя, вдохновлялся идеями Карно.
Трактат Карно стал великолепной научной работой, продуктом плодотворного воображения, работавшего в связке с разумом, который опирался на факты. Наследие Карно вокруг нас. Двигатели внутреннего сгорания, реактивные двигатели, гигантские турбины для генерации электричества и даже ракеты, доставившие людей на Луну, были созданы благодаря открытию Карно, который понял, что создание движущей силы происходит при перемещении теплоты из горячей зоны в холодную. Не столь очевидную, но ничуть не менее важную роль наследие Карно сыграло в формировании наших представлений о Вселенной.
* * *
Летом 1824 года Карно опубликовал Размышления о движущей силе огня за свой счет. Ему было 28 лет. Вероятно, ему лучше было отправить работу в популярный журнал своей альма-матер, Политехнической школы. Быть может, сам стиль Размышлений, объединявших социологию, политику и абстрактные рассуждения, сделал их неподходящими для публикации в журнале? Как бы то ни было, Карно опубликовал работу сам, заплатив 459,99 франка, что было, должно быть, непросто, ведь он жил на половинный оклад, все еще состоя на службе во французской армии. Отпечатанные 600 экземпляров поступили в продажу 12 июня 1824 года по цене три франка за штуку. Неизвестно, сколько из них было продано. Впрочем, позже в том же месяце идеи из книги были изложены на семинаре в Академии наук в Париже, но сведений о том, запомнили ли этот семинар ведущие французские ученые и присутствовал ли на нем сам Карно, не сохранилось.
В конце 1820-х годов Сади Карно попал в водоворот французской политики. В 1828 году он ушел в отставку из армии и после этого, похоже, нигде не работал, хотя до нас дошло письмо, в котором сообщается, что он пытался открыть инженерное дело.
Есть основания предположить, что после публикации Размышлений о движущей силе огня Карно потерял веру в свой труд. Хотя его личные бумаги почти не сохранились, его младшему брату удалось найти небольшую стопку из 23 листов, озаглавленную Заметки о математике, физике и других предметах. Эти заметки показывают, что Карно сомневался в ключевой гипотезе Размышлений о том, что теплота представляет собой не подлежащий уничтожению флюид, называемый теплородом. Рассуждая о моментах, когда теплота совершает заметное действие, например толкает поршень, он пишет: Количество не может более оставаться постоянным. Оглядываясь назад, мы можем счесть это замечание свидетельством его безупречных научных инстинктов. Но в представлении Карно оно ставило под сомнение его главное открытие что без холода тепло бесполезно. Кроме того, если движущую силу производил не теплород, который двигался из горячей зоны в холодную, то гипотеза Карно казалась хлипкой. Как он отметил в своих заметках, было бы сложно объяснить, почему при развитии движущей силы необходимо холодное тело. Попытки примирить гипотезу Карно о том, что теплота должна перемещаться из горячей зоны в холодную для создания движущей силы, с воображаемым теплородом открыли следующую главу в нашей истории.
К несчастью, роль Карно на этом закончилась. В 1832 году он был по неясной причине госпитализирован в психиатрическую лечебницу в Иври под Парижем. Пока он лежал там, во Франции разразилась эпидемия холеры, и Карно стал ее жертвой. Последний взгляд на него мы бросаем, когда он, страдая от лихорадки, мечется в бреду, не понимая огромной важности своей работы. В учетном журнале лечебницы записано: Месье Карно Лазар Сади, бывший военный инженер, поступил з августа 1832 года, страдая от помешательства. Вылечился от помешательства. Скончался от холеры 21 августа 1832 года.
Ему было 36 лет.
Глава 3
Замысел Творца
Я не занимался ни судами, ни экипажами, ни печатными станками. Моя цель заключалась в том, чтобы сперва отыскать правильные закономерности.
Джеймс Джоуль
Двадцать четвертого мая 1842 года два брата, которым не исполнилось и тридцати, выплыли на лодке на середину озера Уиндермир, крупнейшего в английском Озерном крае. Пока старший орудовал веслами, младший, сидевший несильно, но заметно ссутулившись, заряжал порохом пистолет. Зачем? Ему хотелось изучить эхо, прислушиваясь к выстрелам, которые гулко отдавались среди холмов. Чтобы выстрел получился громким, молодой человек, которого звали Джеймс Джоуль, положил в пистолет тройную дозу пороха. Отдача оказалась такой сильной, что пистолет упал в озеро, и это служит прекрасным примером непреходящей любви Джоуля к научным экспериментам, которые на первых порах проводились без всякой оглядки на меры предосторожности. В другой раз при осечке у него сгорели брови. В третий он ударил себя самого и друзей электрическим током. Самый жестокий эксперимент он провел, когда с помощью мощной батареи подверг воздействию тока служанку, которой велел описывать свои ощущения. Джоуль повышал напряжение, пока несчастная не потеряла сознание.
Джеймс Прескотт Джоуль, второй из пятерых детей в семье пивовара, родился в 1818 году в Солфорде, в графстве Ланкашир. Примерно за сорок лет до этого Ричард Аркрайт запустил первую в мире хлопкопрядильную фабрику на паровых двигателях в соседнем Манчестере, который тогда был непримечательным рыночным городом на северо-западе Англии. В последующие годы появились десятки новых фабрик, и промышленники начали внедрять в стремительно растущем Манчестере систему массового заводского производства. В 18011830 годах население Манчестера фактически удвоилось и достигло примерно 140 тысяч человек: множество людей со всей страны стекалось в город, прозванный Хлопкополисом. Пивовары Джоули процветали. Рабочие хотели пить, и спрос на пиво возрос настолько, что вскоре после рождения Джоуля его отец мог позволить себе содержать большой дом с шестью слугами в хорошем районе Суинтон.
По собственному свидетельству, в детстве Джоуль был болезненным до 20 лет он регулярно проходил лечение из-за проблем с позвоночником, которыми объяснялась его легкая сутулость. Он был стеснителен и глубоко привязан к старшему брату, поэтому, чтобы не разлучать их, родители решили дать сыновьям домашнее образование. Семья была настолько состоятельной, что, когда Джоулю исполнилось 16 лет, отец записал его на частные уроки к знаменитому химику Джону Дальтону.
Подростком Джоуль приступил к работе на семейном пивоваренном заводе и почти два десятка лет играл активную роль в управлении предприятием. На первых порах он каждый день с 9 утра до 6 вечера трудился в окружении всевозможных механизмов насосов и резервуаров, где жидкости перемешивались и нагревались до определенной температуры, и это определило направление его научных исследований. Изучая заводские машины, он заинтересовался идеями Сади Карно.
Несмотря на одержимость паровыми машинами, Карно главным образом пытался понять, как получить максимальное количество движущей силы из заданного количества теплоты.
Среда, в которой работал Джоуль, подталкивала его идти дальше и спрашивать, существует ли такой источник движущей силы, который был бы лучше, чем теплота. На семейном пивоваренном заводе была установлена паровая машина, и Джоуль знал, какие расходы несет предприятие при покупке угля. Надеясь сократить издержки и проявляя немалое научное любопытство, он решил проверить, сможет ли недавно изобретенный электрический двигатель, питающийся от батареи, обеспечивать работу установленных на заводе насосов и мешалок с меньшими затратами, чем при сжигании угля.
Первые электродвигатели появились в начале 1830-х годов и быстро свели всех с ума. Западный мир погрузился в электрическую эйфорию. Появились такие организации, как Лондонское электрическое общество, а российский царь и американское правительство стали финансировать исследования, чтобы выяснить, могут ли новые устройства питать суда и тянуть поезда. В Манчестере начал выходить журнал The Annals of Electricity (Анналы электричества), редактор которого был дружен с Джоулями и публиковал многие ранние работы Джоуля в своем скромном издании.
К 1840 году, сидя в лаборатории, устроенной в доме родителей, Джоуль конструировал батареи, электромагниты и двигатели, чтобы изучать их работу. Одно из первых его наблюдений стало самым важным. Он заметил, что при прохождении электрического тока провод нагревается. Иными словами, электричество могло не только осуществлять работу, питая двигатель, но и давать теплоту. (Отныне я буду называть работой то, что Карно называл движущей силой [то есть меру усилия, необходимого для подъема определенной массы на определенную высоту].)
Способность электричества создавать теплоту подкрепила сомнения Джоуля в теории теплорода, которая гласила, что теплоту невозможно ни создать, ни уничтожить. Джоулю казалось, что, проходя по проводу, электрический ток именно создает теплоту.
С характерным прилежанием Джоуль провел измерения и сделал вывод, что даже в случае несостоятельности теории теплорода существует математическая зависимость между создаваемым теплом, силой тока и сопротивлением провода, по которому этот ток идет. Убежденный в важности своего открытия, Джоуль решил познакомить с ним более широкую аудиторию, чем читатели Анналов, и потому отправил статью о нем в самый престижный в Британии научный журнал The Transactions of the Royal Society. Хотя выведенное Джоулем равенство сейчас входит в школьный курс физики и лежит в основе работы каждого электротостера, редактор отказал Джоулю в публикации и позволил поместить лишь краткий обзор статьи в менее известном родственном журнале. Таким стало первое из многих препятствий, с которыми Джоуль столкнется в попытках сообщить широкому научному сообществу о своих трудах.
В 18401841 годах Джоуль приобрел новые навыки в работе с электричеством и сосредоточился на сравнении затрат на работу электродвигателя и паровой машины. Во времена Джоуля батареи состояли из цинковых пластин, погруженных в кислоту. При растворении цинка в кислоте вырабатывалось электричество, питавшее двигатель, который поднимал груз, то есть выполнял работу. Проводя эксперименты, Джоуль вычислил, что электричество, вырабатываемое при растворении одного фунта (0,45 кг) цинка, может поднять груз массой 331400 фунтов (150320 кг) на высоту в 1 фут (0,3 м). С точки зрения издержек сравнение оказалось в пользу питаемых углем паровых двигателей, которые при сжигании одного фунта угля, стоившего гораздо дешевле цинка, поднимали в пять раз больший груз массой 1,5 млн фунтов (680388 кг) на высоту в 1 фут.
Это открытие похоронило идею о замене установленной на пивоварне паровой машины на электродвигатель. Я почти потерял надежду на использование электромагнитов в качестве экономичного источника энергии, написал Джоуль. Но при этом оно помогло Джоулю найти способ проводить числовое сравнение разных способов получения работы.
Далее Джоуль приступил к экспериментам с динамо-машинами, преобразующими работу в электричество. Динамо-машины вроде тех, что крепятся к колесам велосипеда, состоят из катушки с проводом, в центре которой находится магнит. Когда велосипед движется, колесо заставляет магнит вращаться, в результате чего на катушку передается электрический ток, который питает фары. Джоуль заметил, что генерируемое динамо-машиной как и генерируемое батареей электричество нагревает провод, и решил, что нашел способ испытать теорию теплорода, которая давно вызывала у него сомнения.
По мнению Джоуля, способность электрического тока создавать теплоту имела два объяснения:
1. Теплота, как полагало большинство ученых, объяснялась присутствием теплорода. В таком случае, чтобы нагревать подсоединенные провода, динамо-машина должна была накачивать их заключенным внутри нее теплородом. Но тогда следовало ожидать, что катушка динамо-машины будет охлаждаться при перемещении теплорода по цепи.
2. Электрический ток преобразовывался в теплоту, проходя по проводам.
В конце 1842 и начале 1843 года Джоуль провел серию революционных экспериментов, чтобы определить, какое из двух объяснений верное. Он сконструировал запускаемую заводной рукояткой динамо-машину с любопытной модификацией. Он поместил катушку, проводящую электрический ток, в стеклянную трубку. Затем он наполнил трубку водой, чтобы замечать любые температурные изменения в катушке. Если теплород действительно существовал, то после запуска динамо-машины и выработки электричества он должен был устремиться прочь от катушки, охлаждая воду вокруг.