Учение об иллюзиях полета. Основы авиационной делиалогии - Владимир Александрович Пономаренко 12 стр.


Если после осмотра горизонта перевести взгляд на приборы в кабине, прочесть их показания и вновь заняться осмотром горизонта, то на какое‐то время горизонт начисто выпадает из поля зрения. Время, необходимое для переноса взгляда на приборы и обратно на горизонт, составляет 2,31 с [88] (см. таблицу 2.2, нижняя часть).

Указанное время  это средняя величина. При выполнении маневра во избежание столкновения с реальным самолетом в воздухе необходимо еще приблизительно 3,5 с от момента принятия решения до осуществления маневра. Общее время составляет примерно 5 с в зависимости от индивидуальных особенностей пилота.

3. ОСОБЕННОСТИ НОЧНОГО ЗРЕНИЯ

В темноте часть рецепторов (клетки колбочки) теряют светочувствительность, а функционируют только клетки палочки, для максимальной чувствительности которых требуется 30 минут на адаптацию. В течение этого сравнительно небольшого промежутка времени могут возникать различные иллюзии. Острота ночного видения снижается сразу же после выхода на освещенное место. Для его повторного восстановления в темноте вновь требуется 30 мин. Поэтому, если для ознакомления с документами (карта и пр.) необходимо использовать фонарь, то при этом следует прикрывать один глаз, чтобы сохранить хотя бы в нем остроту ночного видения.

Следует отметить, что на остроту ночного видения не влияет красный свет, но он изменяет цвет предметов. Так при красном свете трудно различать красные, синие, черные обозначения, например, на карте. По данным японских исследователей, слабый белый свет небольшой яркости не влияет на остроту ночного зрения. В связи с этим в последние годы появились летательные аппараты, в кабине которых для освещения используется слабый белый свет [28] .

При полетах в условиях достаточной освещенности резкое снижение в наземные темные слои опасно, так как глаза не успевают адаптироваться к темноте. В результате пилот может не заметить какого‐либо препятствия, у него могут возникнуть зрительные иллюзии.


Таблица 2.2

Временные периоды функции зрения в полете


Темнота скрывает линию горизонта, окружающие визуальные ориентиры, и зрительное восприятие усложняется. На этой основе возможно возникновение иллюзий, ошибочных действий пилота. Например, размеры звезд или навигационных огней других летательных аппаратов кажутся больше, чем они есть на самом деле.

При определении расстояния по кажущимся размерам источника света возможны ошибки на почве иллюзии. Поэтому в ночное время рекомендуется соблюдать осторожность и выполнять маневр с достаточным запасом высоты и дальности, особенно при сближении с огнями. Вообще ночью извращенное восприятие источников света очень часто становится причиной зрительных иллюзий. Во избежание этого в ночном полете нужно полностью полагаться на показания приборов.

Как известно, посадка на основе визуального наблюдения местности  сложная работа для пилота. Из кабины самолета посадочная полоса представляется в виде трапеции, поэтому даже для опытных пилотов принятие решения и осуществление корректировок при посадке оказывается нелегкой задачей. При посадке на более длинную, чем обычно, ВПП может показаться, что высота принятия решения была заниженной, а при посадке на более короткую полосу  завышенной. Если перед ВПП имеется подъем или спуск, то легко ошибиться в выборе правильной высоты для захода на посадку. Наличие подъема или спуска (рельефа местности) перед полосой  одна из причин зрительных иллюзий, особенно ночью.

Необходимо отметить, что пилот при посадке получает необходимую информацию не только из центрального поля зрения, куда направлена зрительная ось, но и из периферического поля зрения, на котором также отражаются размеры ангаров, других строений, высота деревьев и т. п. Все это учитывается пилотом при принятии решения о выборе высоты и скорости. Однако ночью эти процессы значительно затрудняются и возможно извращенное (иллюзорное) восприятие ориентиров.

4. ВОСПРИЯТИЕ МЕЛЬКАЮЩЕГО СВЕТА

Мелькающий свет имеет специфические особенности. Серия световых импульсов воспринимается как непрерывный сигнал, если интервалы между импульсами соизмеримы с временем инерции зрения. Критической частотой слияния мелькания (КЧСМ) является пороговая частота от 14 до 70 Гц в зависимости от скважности импульсов, их формы, яркости, угловых размеров световых сигналов, уровня адаптации рецепторов, функционального состояния зрительного анализатора. КЧСМ увеличивается при возрастании яркости, угловых размеров объекта (светового сигнала), при сокращении световой фазы относительно темноты и при повышенной возбудимости центральной нервной системы [76].

5. ВОСПРИЯТИЕ ДВИЖЕНИЯ

Восприятие движения имеет большое значение для пилота. Нижний абсолютный порог восприятия скорости составляет: при наличии в поле зрения неподвижного ориентира 12 угл. мин/с; без ориентира 1530 угл. мин/с. Равномерное движение с малыми скоростями (до 10 угл.мил/с), при отсутствии в поле зрения неподвижных ориентиров может восприниматься как прерывистое. При оценке двух однородных объектов, один из которых меньше по угловым размерам, скорость меньшего завышается больше, чем более крупного (близкого) объекта [76].

Опознание расположения, формы объекта возможно в определенных границах: вверх  25°, вниз  35°, вправо и влево  32° от оси зрения. Порог восприятия абсолютной удаленности составляет 12 % при дистанции l30 м, относительной удаленности 1214 мм, при дистанции 56 м [76].

Следует отметить еще одну особенность зрительного анализатора, которая не является патологией или иллюзией, но которую важно иметь ввиду пилотам. Это возникновение последовательных зрительных образов, которые появляются перед глазами непосредственно после прекращения восприятия светового сигнала или объекта. Например после яркой вспышки света образ наблюдаемого объекта возникает из темноты перед глазами несколько раз в определенной последовательности с промежутками 0,2 с, а затем затухает. Для светоадаптированного глаза после прекращения действия вспышки света или осмотра экрана (например, телевизора) через 11,5 с появляются отрицательные образы объекта, яркие поверхности кажутся темными (например, экран), а темные  светлыми. При цветном объекте образ кажется окрашенным дополнительным цветом (белый). Возникновение последовательных зрительных образов зависит от состояния человека (утомление, возбуждение), от освещенности и яркости объекта и фона [76].

2.2 Слуховой анализатор

Слуховой анализатор играет меньшую роль в создании иллюзий, однако его значение в профессиональной деятельности пилота огромно. Имея некоторое представление о функции слухового анализатора, легче понять функции вестибулярного анализатора, тем более, что оба анализатора анатомически расположены во внутреннем ухе. Рассмотрим сначала слуховой анализатор.

Адекватным раздражителем для слухового анализатора является звук в диапазоне от 16 до 20 Гц. Звуковое давление, проходя через слуховой проход (выполняющий роль резонатора звука и предохраняющий внутренние части уха), воздействует на барабанную перепонку и вызывает ее колебания. Барабанная перепонка соединена со слуховыми косточками, которые передают колебания перепонки внутреннему уху. Звук, уловленный ушной раковиной, дойдя до внутреннего уха, усиливается в 90 раз, и возрастающее давление передается слуховыми косточками звуковоспринимающему органу Корти с волосковыми клетками  рецепторами. Последние расположены на внутренней поверхности так называемой улитки, части костного лабиринта уха (см. рисунок 2.3). Лабиринт заполнен лимфатической жидкостью и состоит кроме улитки из полукружных каналов и отолитового органа. В верхней части улитки имеется отверстие, через которое первоначальное колебание барабанной перепонки и слуховых косточек передается этой жидкости. Колебания жидкости улавливаются нервными рецепторами и преобразуются в нервные импульсы, которые передаются по слуховому нерву в мозг, где происходит их анализ и синтез.

Воздействие звуковых колебаний субъективно воспринимается как громкость звука, которая зависит от интенсивности звукового давления. В качестве единицы уровня громкости звука принят фон. Это минимальное звуковое давление, которое человек может расслышать при частоте 1000 Гц. В таблице 2.3 представлены уровни громкости звука различных источников [28].


Рис. 2.3. Структурная схема слухового и вестибулярного анализатора:

1  слуховой проход; 2  барабанная перепонка; 3  слуховые косточки; 4  овальное отверстие; 5  улитка; 6  слуховой нерв; 7  отолитовый орган; 8  полукружные каналы; 9  вестибюлярный нерв



Таблица 2.3

Уровни громкости различных источников звука


Для характеристики величин, определяющих: восприятие звука, существенным является не столько абсолютное значение интенсивности звука, сколько его отношение к пороговым значениям. В качества таких относительных единиц в акустике используется децибел (дБ), логарифмическое выражение звукового давления.

С возрастом у человека происходит снижение слуха, т. е. возрастают пороги чувствительности рецепторов к звуку, особенно высоких частот. Человеческое ухо приспособлено для восприятия очень широкого диапазона частот, особенно большая чувствительность уха к слуховым частотам от 100 до 8000 Гц (частотный диапазон речи), интенсивностью до 65 дБ.

При наличии постороннего шума снижается разборчивость звуковых сигналов (речи), т. е. повышается порог слышимости полезного сигнала (речи) под влиянием шумовой помехи. Это эффект маскировки, который зависит от уровня громкости маскирующего шума и его спектра. Наиболее распространенный вид помехи  широкополосный шум. Влияние шума на разборчивость речи зависит от соотношения уровня шума и речи. Для удовлетворительного восприятия речи ее уровень должен превышать уровень шума примерно на 6 дБ [76]. Специфический вид маскировки  «речевой коктейль», при котором стоит задача выделения одного речевого сообщения из нескольких слышимых одновременно. Разборчивость речи в этих условиях зависит от многих факторов, не только от громкости речи. Ухо способно различать нужный голос среди двух‐трех абонентов. Из двух одновременных сообщений точнее воспринимается поступившее на 0,20,4 с раньше.

Оптимальным считается темп речи 6080 слов/мин. с интервалами между словами 1 с, допустимым является темп до 120 слов/мин [76].

Наиболее вредным для уха является звук в полосе частот 3000  4000 Гц. Поэтому средства защиты от шума должны быть достаточно эффективны именно в этом диапазоне частот и не должны препятствовать звуку человеческого голоса.

2.3 Вестибулярный анализатор

Вестибулярный анализатор является наиболее важным после зрительного в деятельности пилота. Рецепторы вестибулярного анализатора расположены в полукружных каналах и преддверии лабиринта внутреннего уха. Совместно с информацией от рецепторов, расположенных в мышцах, связках, суставах и коже, вестибулярный анализатор обеспечивает равновесие тела, а также координацию и анализ движения тела (его частей) в пространстве. Его важной функцией является информация об изменении положения тела в пространстве под влиянием угловых или прямолинейных ускорений. Постоянная скорость на функции вестибулярного аппарата не сказывается.

Вестибулярные нервные волокна начинаются с лабиринта и направляются прямо в головной мозг, где производится обработка информации. Вестибулярный нерв тесно связан с другими, особенно с глазодвигательным нервом и вегетативной нервной системой, при раздражении которых могут возникать головокружение, рвота, потливость, нистагм, изменение походки. Эти проявления тесно связаны с раздражением вестибулярного анализатора, которое может возникнуть при резких движениях головой, туловищем, руками и ногами.

Наиболее важным и объективным показателем состояния вестибулярного анализатора является нистагм  непроизвольные колебательные движения глазных яблок, возникающие вследствие нарушения равновесия между лабиринтами, или при раздражении одного из них (одностороннее раздражение). Часто нистагм сочетается с нарушением равновесия и походки.

Раздражение вестибулярного аппарата возникает не только при действии углового ускорения (вращения), но и при действии на внутреннее ухо тепла или холода (например, холодной или теплой воды) [76].

Вестибулярный аппарат обеспечивает адекватную (правильную) информацию о поворотах и наклонах головы в общей сложности до нескольких угловых секунд. Ощущение углового (вращательного) движения испытывается лишь в начальный момент вращения и при его остановке. При продолжающемся равномерном вращении, а также через некоторое время после его остановки возникает ощущение прекращения вращения.

Угловое движение самолета, которое по своей скорости ниже порога чувствительности вестибулярного аппарата (порядка одного градуса в секунду), может вызывать иллюзии пространственного положения. В этом случае пилот может даже не ощущать начала вращения (например, крена или рысканья самолета) и будет воспринимать движение самолета в плоскости горизонта и по прямой, хотя на самом деле самолет может быть в положении крена или (и) лететь по кривой.

Большое значение в происхождении иллюзий в полете имеет ускорение Кориолиса, когда на фоне вращательного движения в одной плоскости происходит движение в какой‐либо другой, не совпадающей с ней плоскости. Например, при выполнении виража или поворота самолета, если пилот быстро наклонит голову (для настройки радиостанции и т.п.), то могут возникать сильное головокружение, соответствующие вегетативные реакции (рвота, потливость и т.п.) и иллюзии пространственного положения. Поэтому во время вращательных и криволинейных движений в полете пилоты должны, как правило, избегать движений головой.

Воздействие на человека угловых ускорений вызывает также нистагм глазных яблок. Поскольку в полете положение приборной доски остается фактически неизменным по отношению к пилоту, то возникновение нистагма затрудняет считывание показаний приборов и способствует возникновению иллюзии пространственного положения. После окончания вывода из крена пилот может испытывать чувство собственного вращения, а также вращения окружающих предметов (огни на земле, звезды). Но эти ощущения могут не возникать или быстро прекращаться, если зрительные ориентиры видны отчетливо и хорошо знакомы пилоту [16, 20].

Вестибулярный аппарат с помощью купулярных рецепторов воспринимает сигналы угловых ускорений, а с помощью макулярных рецепторов  сигналы линейных ускорений и вектора гравитации (земного притяжения) и обеспечивает таким образом правильное положение человека в пространстве. При отсутствии зрительного контроля человек способен определить направление вертикали (т. е. положение своего тела относительно земли) с точностью до нескольких градусов в зависимости от положения тела, жесткости сидения, продолжительности пребывания в наклонном положении и других факторов. Восприятие, обусловленное земным притяжением, поддерживает тонус мышц, обеспечивающих устойчивость заданного положения. При наклоне головы в любую сторону поступают сигналы об этом в вестибулярный аппарат. Прямолинейное ускорение ощущается при езде в городском транспорте, при подъеме и спуске на лифте, при наборе высоты и в других аналогичных случаях [16].

Назад Дальше