Понимание учеными протоколов работы распределенной нейронной сети было облегчено появлением микроэлектронных матричных записывающих устройств (MЗУ), способных к записи активности множества нейронов одновременно. Эти исследователи убеждены, что одновременная запись с многих локализаций в ткани может открыть код действий высшей мозговой деятельности. Проф. Барклей Моррисон (prof. Barclay Morrison) в 2009 г. сообщил, что они стали использовать новый тип MЗУ с электродами, сделанными не из металла, а из вертикально ориентированных углеродных нанотрубок (VACNF). Они показали, что эти устройства могут выполнять стандартные процедуры электрофизиологического исследования на уровне и выше уже существующих коммерческих MЗУ. Исследователями был показан потенциал электродов, основанных на нанотрубках, для установления интерфейса с легковозбудимыми клетками (Resident Neuroelectrochemical Interfacing Using Carbon Nanofiber Arrays). Углеродные нанотрубки электрохимически активные структуры, которые могут быть объединены в параллельные матрицы, используя обычные инструменты и подходы микроинженерии. В противовес к стандартным плоским матрицам, нанотрубки обеспечивают новые неплоскостные высокодифференцированные структуры, которые предоставляют уникальные возможности для исследования вне- и внутриклеточных процессов. Ранее было продемонстрировано, что эти структуры могут создавать интерфейс с индивидуальными клетками, но не было известно, возможны ли соединение с интактной тканью и запись потенциалов. Теперь якобы доказательства этому получены, результаты исследования показаны в статье Vertically Aligned Carbon Nanofiber Arrays Record Electrophysiological Signals from Hippocampal Slices. Для своих экспериментов исследователи изготовили устройства, состоящие из 40 VACNF-электродов. Для записи электрической активности была взята ткань области гиппокампа. Производилась запись как обычной деятельности, так и сигналов после раздражения.
Считается, что в области нейроинженерии углеродные электроды имеют несколько потенциальных преимуществ перед другими типами. Наиболее важно, что эти электроды хорошо подходят для электрохимических измерений в нейронном окружении и могут использоваться для мониторинга химических изменений нервной ткани, усиливать способности нейронов к восприятию как электрических сигналов, так и уровня медиаторов и могут привести к разработке и возникновению новых типов нейропротезов.
Результаты исследований, полученные в различных научных лабораториях, показывают, что углеродные нанотрубки (УНТ) могут быть использованы в нейроинженерии и для фундаментальных исследований поведения нервных клеток, и для практического применения для изучения роста и организации нейронной сети, улучшения эффективности передачи сигналов в нервной системе, создания биосовместимого интерфейса, наноэлектродов.
Несмотря на большой интерес нейрофизиологов, биологов и других исследователей к углеродным нанотрубкам, детали взаимодействия «нейрон УНТ» пока малоизвестны. Значительный прогресс в этой области достигнут в работах коллектива авторов из Италии и Швейцарии. Ученые в течение 812 дней культивировали нервные клетки гиппокампа (гиппокамп часть головного мозга) крыс на подложках из одностенных нанотрубок (ОСНТ). Для получения подложек раствор нанотрубок осаждали на стекло, где после термообработки образовывалась механически прочная пленка толщиной 5070 нм. Данные электронной микроскопии показали, что по всей подложке разрослись нейроны, имеющие размеры и морфологию, типичные для здоровых клеток. И не просто разрослись, а тесно соединились с нанотрубками! Детальный анализ с помощью микроскопии более высокого разрешения выявил наличие плотного контакта мембраны нейрона с нанотрубкой, что очень важно для создания интерфейса «нейронная ткань внешнее устройство». Рост нейронов и образование функциональной сети на ОСНТ указывает на полную биосовместимость этих живых и неживых объектов.
Основной результат работы: в нейронах возникали отклики на внешнюю электростимуляцию, осуществляемую через нанотрубки с помощью подсоединенного к подложке Ag-электрода. Таким образом, нанотрубки не только хорошая поверхность для выращивания нейронной сети, они могут и способствовать повышению эффективности работы мозга благодаря передаче по ним электрического сигнала.
В последующих экспериментах ученые использовали как одностенные, так и многостенные нанотрубки. Влияние УНТ на функции нейронов исследовали, сравнивая данные для гиппокампальных клеток крыс, культивированных 812 дней на УНТ-пленках и контрольных подложках. Материалами контрольных подложек служили оксид индия-олова ITO, имеющий высокую электропроводность, и пептиды неэлектропроводные, но самособирающиеся в нановолокна, похожие на нанотрубки.
Были использованы стандартные электрофизиологические методы, которые позволили зарегистрировать заметное повышение синаптической активности для УНТ-образцов. Результаты подтвердили специфичность нанотрубок, т.к. ни высокая электропроводность первой контрольной подложки, ни нановолокнистая структура второй не помогли стимулировать нейроны. Далее авторы изучили, как нанотрубка может влиять на электрические свойства отдельного, изолированного от сети нейрона. На основании результатов измерений и математического моделирования они пришли к выводу, что нанотрубка может служить «цепью короткого замыкания» между телом нейрона и отростками, таким образом «приближая» к телу удаленные участки нейрона. Если это действительно так, то можно надеяться, что углеродные нанотрубки помогут не только устранить некоторые заболевания и нарушения нервной системы, но и смогут заметно повысить эффективность работы мозга. Это действительно научный прорыв в создании новых форм «биоконтактов» между живыми и неживыми элементами нервной ткани человека, и это направление заслуживает поддержки и фундаментального изучения.
Исследования американских ученых показали, что годятся не всякие подложки из проводящих УНТ! Оказывается, существует достаточно узкий диапазон электропроводности, оптимальный для эффективного развития нейронов. Авторы работы синтезировали ОСНТ, добавили полиэтиленгликоль (ПЭГ), способствующий их растворению и, соответственно, улучшающий биосовместимость, в УЗ-ванне получили однородную дисперсию и распылением нанесли на горячее покровное стекло однородную пленку. Изменяя толщину пленки, можно было контролируемым образом менять электропроводность. Материалы подложек толщиной 10, 30 и 60 нм имели удельную электропроводность 0,3; 28 и 42 См/см соответственно. Для контроля использовали покровные стекла, покрытые неэлектропроводным полиэтиленимином (ПЭИ), который применяется в нейробиологии для активизации адгезии и роста клеток. Культуры гиппокампальных нейронов крыс выращивали на подложках в течение 3 дней. Нейроны имели флуоресцентную метку, и их рост можно было наблюдать с помощью флуоресцентной и интерференционно-контрастной микроскопии. Цель исследований понять, какую роль играет «пассивная» проводимость. Выяснилось, что разрастание нейронов на 30- и 60-нанометровых ОСНТ-ПЭГ пленках не отличалось от контроля. А вот для подложки толщиной 10 нм общее разрастание отростков и длина всех ветвей заметно увеличились для каждого нейрона. Эти наблюдения могут объяснить различия в результатах, полученных в ряде экспериментов с электропроводными подложками.
Авторы пока не могут однозначно объяснить, почему наилучший рост нейронов наблюдается на пленке с определенной (низкой) проводимостью. Похожие результаты для другого типа клеток, культивированных на подложках из полипиррола с разной проводимостью, были ранее объяснены модификацией ионного транспорта через клеточную мембрану. Возможны и другие механизмы. Тем не менее сделан важный вывод о влиянии электропроводности подложки на развитие нейронов.
Рис. 8. Проф. нейронаук Miguel Nicolelis из Duke School of Medicine (Durham, US), директор центра нейроинженерии
Ученые из лаборатории проф. M. Nicolelis (рис. 8) Университета Дюка (США, Северная Каролина) утверждают, что «разработали алгоритм, позволяющий переводить мысли о движении руки в компьютерный приказ». Одиннадцати пациентам, страдающим болезнью Паркинсона, было вживлено по 32 электрода толщиною с человеческий волос в область головного мозга, якобы отвечающую за управление конечностями. Электроды по беспроводной системе подключались к ПК, на котором больные играли в компьютерные игры. В результате эксперимента ученые считают, что им удалось расшифровать нейронный код, с помощью которого мозг управляет телом. Теперь ученые утверждают, что методика вживления в мозг электронных чипов, усовершенствованная должным образом, через несколько лет позволит людям с нарушенной моторикой мысленно управлять протезами. Был разработан экзоскелет, якобы управляемый мыслями спинальника.
Целью проекта Walk Again Project
ТМ
TM
TM
Рис. 9. Фотография первой версии экзоскелета, управляемого мыслью инвалида, созданной в рамках проекта Walk Again Project, на церемонии открытия чемпионата мира по футболу в июне 2014 г.
За прошедшее десятилетие нейробиологи Центра нейроинженерии Университета Дьюка превратили взаимодействие между мозгом и механизмами (brain-machine interface BMI) в одну из самых захватывающих и многообещающих областей фундаментальных и прикладных исследований в современной нейробиологии (цитируется из материалов проекта Walk Again
TM
Проект Walk Again
TM
TM
Вот пример того, как позиционируют свои исследования разработчики современных нейроинтерфейсов: «Если вы думаете, что управление техникой силой мысли возможно лишь в фантастических фильмах, то новейшее изобретение нейроинженеров из американского Брауновского университета сможет вас удивить. Ученые уже воплотили мечту многих людей о том, что можно включить компьютер, микроволновку, стиральную машину и другую технику силой мысли. Они создали устройство, которое считывает и передает сигналы мозга. Такое устройство призвано упростить жизнь тем людям, передвижение которых ограничено». Эта выдержка из СМИ о нейроинженерах из Эрморского университета Атланты (США), которые разработали беспроводной машинно-мозговой интерфейс, с помощью которого в будущем можно будет создать совершенно уникальные протезы, управляемые силой мысли. В Эрморском университете Атланты научили макак-резус мысленно управлять роботизированной рукой. Для этого в область коры головного мозга, отвечающую за движение, было вживлено по 320 электродов. Управляя джойстиком, обезьяны научились шевелить искусственной рукой. А ученые получили возможность изучить потоки электрической энергии, преобразованной из сигналов обезьяньих нейронов. В конце концов животные усвоили, что для того, чтобы двигать конечностями, достаточно подумать об этом. Оказалось, что имплантаты в мозге макак служили им до 3 лет. По-видимому, дальше в мозге формировались рубцово-кистозные изменения и перерождение нервной ткани, и имплантаты было необходимо извлекать из мозга животных.
Из инвазивных нейротехнологий нейроинженерии заслуживают наибольшего внимания еще две. Одна их них это также нанотехнология для установления интерфейса «мозг компьютер». Dongjin Seo, Jose M. Carmena, Jan M. Rabaey, Elad Alon, and Michel M. Maharbiz из Департамента электроинженерии и компьютерных наук Helen Wills Neuroscience Institute, University of California, Berkeley, CA в 2013 г. опубликовали статью Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain Machine Interfaces, что в переводе на русский означает «Нейронная пыль: ультразвуковое решение с низким энергопотреблением для хронических интерфейсов машин с мозгом», в которой они предложили схемы наносистемы нейронной пыли, показывающие расположение ультразвукового запрашивающего устройства под черепом и воспринимающие узлы нервной пыли, рассредоточенные по всему мозгу (рис. 10). Авторы считают, что можно предположить, что нейронная пыль с ультрагибким полиимидным «хвостом», заполненным участками записи, обходит пределы достижимого дифференциального сигнала между двумя электродами, размещенными на следе нейронной пыли с параметрами 500 мкВт, 40 пВт.
Еще одна уникальная имплантируемая система BMI «BioBolt», составляющая в диаметре 18 мм, была разработана в Мичиганском университете. Она «вкручивается» в голову, но так, чтобы не проникнуть в кору головного мозга, а лишь легонько касаться ее пленочной микросхемой величиной с ноготь (рис. 11). При этом корпус прибора скрывается под кожей во избежание инфекции. Имплантируемая американская система BioBolt действует подобно микрофону, «прослушивая» возбужденные нейроны и ассоциируя их активность с командами мозга. Эти сигналы усиливаются, фильтруются и оцифровываются. В результате носитель такого чипа может «силой мысли» совершать несложные действия на компьютере. Значительным достижением исследователей стало сокращение энергопотребления устройства за счет того, что кожа головы была использована в качестве проводника при передаче сигнала. В миниатюрных имплантатах именно на радиотрансляцию приходится львиная доля затрат энергии.
Другим направлением создания технологий взаимодействия «мозг компьютер» стали неинвазивные транскраниальные технологии съема информации о биоэлектрической активности головного мозга человека путем современного электроэнцефалографического оборудования (ЭЭГ). Сегодня создано очень большое количество неинвазивных устройств для подобных нейроинтерфейсов.
Рис. 10. Схема системы нейронной пыли, показывающая расположение ультразвукового запрашивающего устройства под черепом и воспринимающие узлы нервной пыли, рассредоточенные по всему мозгу:
а устройство над костями черепа и субдурально на мягкой мозговой оболочке b нейронная пыль с ультрагибким полиамидным «хвостом»:
с модель пьезоэлектрического преобразователя нейронной пыли KLM, показывающая 1 электрический порт и 2 механических порта. Связь между доменами моделируется с помощью идеального электромеханического трансформатора
Точки практического приложения технологии нейроинтерфейса уже научно-клинически определены и достаточно понятны. Известно достаточно большое количество биологических сигналов, которые можно снять с человека (рис. 13). Существует большое количество современных бионических протезов конечностей, роботизированных устройств, автоматизированных инвалидных колясок, экзоскелетов и других приспособлений для инвалидов, но управление этими вспомогательными устройствами для инвалидов крайне затруднено или абсолютно невозможно из-за отсутствия реального взаимодействия между мозгом и техническим устройством.