Но почему в таком случае математика говорит об обратном? Почему расчеты показывают, что почти абсурдный ответ ближе к истине?
Или стоит задать вопрос немного по-другому: правильно ли мы понимаем математику, которой пользуемся? Математика не ошибается, но люди, которым она служит, иногда могут использовать ее ненадлежащим образом.
Если немного подумать, то можно представить множество подобных ситуаций. Рост кошки в среднем составляет 25 см, а лабрадора 60 см. Некоторые бактерии достигают в длину одну тысячную миллиметра. Таким образом, можно утверждать, что по размеру кошка ближе к бактериям, чем к лабрадору. Разница в росте между кошкой и бактериями составляет около 25 см, а между кошкой и собакой 35 см.
Но это заключение, к которому нас подводят числа, снова противоречит нашему естественному восприятию реальности. Кошка и собака принадлежат к одному миру. Они могут играть вместе или, по крайней мере, взаимодействовать. Они видят друг друга, чувствуют друг друга, они знают, что оба существуют. Но кошка, если, конечно, она не изучала науку, понятия не имеет о существовании бактерий. Они не являются частью ее мира, они настолько малы, что их невозможно ни увидеть, ни даже вообразить.
Можно привести еще несколько похожих примеров, которые кажутся интуитивно нелогичными, но все же математически точными. Температура на поверхности Солнца ближе к 5 °C, чем к 15 000 °C. Население Парижа ближе к населению деревни с 12 жителями, чем к населению Нью-Йорка. Если вы взвесите планету Марс, то обнаружите, что ее масса ближе к массе мячика для пинг-понга, чем к массе Земли.
Как и в случае с законом Бенфорда, эти ситуации ставят нас в логический тупик только потому, что мы думаем неверно. Потому что мы используем математический инструментарий, который плохо понимаем, в контексте, в котором он неуместен.
Как же тогда воплотить эти интуитивные размышления в математике? Ответ можно найти в тонком понятии порядка величины.
Сама идея простая, но невероятно мощная. Думать посредством порядка величины значит думать с помощью умножения, а не сложения.
Если вы хотите сравнить числа 2 и 10, вы можете сделать это двумя разными способами. Путем сложения: сколько нужно добавить к 2, чтобы получить 10? В таком случае ответ 8. Или путем умножения: на сколько нужно умножить 2, чтобы получить 10? Тогда ответ равен 5. В первом случае разница между двумя числами получается путем вычитания: 10 ÷ 2 = 8. Во втором деления: 10 ч 2 = 5.
Сказать, что два числа имеют одинаковый порядок величины, значит сказать, что они близки с точки зрения умножения.
Несмотря на то, что на первый взгляд эта идея кажется довольно странной, любой, кто начинает мыслить мультипликативно, то есть посредством умножения, быстро понимает, насколько этот подход лучше соответствует нашей интуиции.
Вернемся к нашей научной викторине. Вот как я мог бы отстоять нашу победу в игре, если бы тогда мыслил здраво. Луна находится на расстоянии 384 000 километров от Земли, а наша команда ответила, что на расстоянии 800 000 км, то есть примерно в два раза дальше. Если мы поделим числа, то окажется, что наш ответ был в 2,08 раза больше верного. Наши противники ответили, что расстояние составляет 10 км, то есть в 38 400 раз меньше правильного ответа! С этой точки зрения мы действительно победили. Более того, этот результат гораздо лучше соответствует нашему интуитивному восприятию мира.
Такой подход сработает и со всеми остальными примерами. Если считать мультипликативно, то размер кошки ближе к размеру собаки, чем к размеру бактерии, масса Марса ближе к массе Земли, чем к массе мячика для пинг-понга, население Парижа ближе к населению Нью-Йорка, чем к населению маленькой деревни, и так далее.
Когда мы сравниваем два числа, независимо от контекста, в котором происходит это сравнение, чаще всего мы интуитивно прибегаем к мультипликативному мышлению. Если в вашем супермаркете товар стоимостью 200 евро подорожает на 8 евро, то, несомненно, это подорожание вас расстроит, но гораздо меньше, чем если бы на те же 8 евро подорожал товар стоимостью 2 евро. В таком случае цена увеличивается до 10 евро, то есть в 5 раз! Расстроиться это мягко сказано. И это при том, что номинально цены выросли на одну и ту же величину.
Таким подходом к сравнению мы обязаны не только работе интеллекта. Это не уникальное свойство мышления, он естественен для нас и моделирует большинство наших взаимодействий с миром. Наше чувственное восприятие окружающего мира тоже мультипликативно.
Если я завяжу вам глаза и вложу в одну руку предмет весом 10 г, а в другую весом 20 г, вы сразу же поймете, какой из них тяжелее. Но различить «на ощупь» предметы весом 10 кг и 10 кг и 10 г куда сложнее. Однако разница в парах одинаковая: 10 г. Или, точнее, разница одинаковая с точки зрения сложения, или аддитивности, потому что с точки зрения умножения она вопиющая: 20 г в два раза тяжелее, чем 10 г. Во втором же случае разница между двумя массами составляет всего 0,1 %.
То же можно сказать и про наше зрение. Вы когда-нибудь пробовали включить свет средь бела дня? Если солнце уже заливает комнату, это почти ничего не меняет. Яркость кажется одинаковой независимо от того, светит лампочка или нет. Но если вы включите свет ночью, то ясно увидите, как он освещает самые темные уголки, которые мгновение назад терялись в полумраке.
Тем не менее днем лампочка излучает не меньше света, чем ночью. То есть с точки зрения сложения яркость одинакова в обеих ситуациях. Но наши глаза воспринимают эту яркость иначе относительно, то есть мультипликативно. При дневном свете яркость лампочки незначительна по сравнению с яркостью Солнца. Ночью же все меняется она правит бал.
Это справедливо и для остальных органов чувств: осязания, зрения, вкуса, слуха, обоняния. Подумайте хотя бы о том, как вы воспринимаете течение времени, преодоленное расстояние, и, что более субъективно, интенсивность эмоций, которые испытываете. Все эти чувства гораздо проще поддаются пониманию, когда вы начинаете думать о них мультипликативно, а не аддитивно.
Наше врожденное чувство чисел
Чтобы проверить ваше чувство чисел, я предлагаю вам небольшой эксперимент. Посмотрите на этот отрезок, на котором размещены два числа: тысяча и миллиард.
Теперь постарайтесь без раздумий, инстинктивно ответить на следующий вопрос: где на этом отрезке вы отметите миллион? Не бойтесь ошибиться, правильным будет любой ответ важно узнать, как работает ваша интуиция с большими числами.
Итак, вы указали на отрезке точку, где, по вашему мнению, находится миллион. Давайте посмотрим, о чем нам это скажет.
Вероятнее всего, в поисках ответа ваш мыслительный процесс развивался поэтапно. Как только вы ознакомились с вопросом, ваш мозг интуитивно выдал ответ. Грубо и без анализа. Затем настал черед более сложных умозаключений. Вы вспомнили все, что знаете о числах тысяча, миллион и миллиард, и выбранная вами точка немного переместилась на отрезке. Или даже сильно переместилась. Влево или вправо? Вероятно, вы также приняли во внимание то, о чем мы говорили ранее. Возможно, вам показалось, что вопрос сформулирован не очень точно, что в нем есть какой-то подвох. Вы ответили на вопрос с точки зрения аддитивности или мультипликативности? Это что-то меняет в данном случае?
Каждый ответит на этот вопрос по-своему, но одна реакция будет превалировать сначала представить миллион примерно на середине отрезка. Или немного левее середины, потому что заключить, что миллион ближе к тысяче, чем к миллиарду, можно достаточно быстро. Но по мере дальнейших размышлений над вопросом точка на отрезке будет смещаться левее, все ближе к тысяче.
Так в чем же дело? Прозвучит неожиданно, но миллион находится совсем рядом с тысячей. В заданном масштабе невооруженным глазом их даже не различить, и оба числа будут располагаться практически там же, где и ноль, если добавить на наш отрезок и его.
Конечно, в абсолютном выражении миллион это большое число, но миллиард все же в тысячу раз больше! В таких масштабах даже миллион это совсем немного. Если бы вы стояли в точке ноля, а миллиард находился в километре от вас, то миллион был бы от вас всего в одном метре, а тысяча в одном миллиметре. А если взглянуть издалека, то покажется, что ноль, тысяча и миллион расположены в одной точке.
Тем не менее, как и в случае с расстоянием до Луны, математический вердикт интуитивно сложно принять. Если записать числа цифрами, миллион займет свою законную позицию посередине между тысячей и миллиардом.
Тысяча: 1000
Миллион: 1 000 000
Миллиард: 1 000 000 000
В миллионе на три нуля больше, чем в тысяче, и на три меньше, чем в миллиарде. Визуально, если мы уделяем внимание не самой величине числа, а длине его написания, у нас возникает откровенный соблазн поместить миллион в середину. Сама природа нашей системы счисления, как правило, заставляет нас думать мультипликативно. Визуальное впечатление было бы совсем иным, если бы эти числа записали римскими цифрами или если бы мы начертили палочки. В нашей системе единиц, десятков, сотен и т. д. добавление нуля приводит к тому, что представленное число умножается на десять, внося путаницу между сложением и умножением.
Таким образом, если мы расставим числа на отрезке, в соответствии с мультипликативным подходом, миллион будет точно посередине. И слева, и справа мультипликативный разрыв между числами будет равен тысяче.
Странно, что этот феномен не наблюдается, когда речь идет о не таких больших числах. Если бы я попросил вас разместить число 50 на отрезке от 1 до 100, вы без малейших колебаний поместили бы его посередине.
Надо заметить, что слова французского языка передают конфликт между аддитивным и мультипликативным.
У первых десятков есть свое название: двадцать, тридцать, сорок Разница между названиями аддитивна. На каждом шаге мы прибавляем десять.
До 100 язык аддитивный.
Когда мы перевалим за 100, в дело вступает умножение. Для обозначения 200 или 300 отдельных слов нет. Мы просто говорим «две сотни» или «три сотни»[6]. Как если бы мы говорили «два-десять» и «три-десять» вместо «двадцать» и «тридцать». Далее слова образуются с мультипликативной скоростью: тысяча, миллион, миллиард, триллион, квадриллион Каждый из этих терминов в тысячу раз больше предыдущего.
Если бы мы поместили эти числа на отрезок и считали аддитивно, все они стремились бы к нулю и выглядели бы крошечными по сравнению с последним числом. Миллиард ничтожен по сравнению с триллионом, который сам по себе смехотворно мал по сравнению с квадриллионом, и так далее.
Школьная математика практически не обращает внимания на этот словарный переход от сложения к умножению. Однако он сильнейшим образом влияет на наш образ мышления. Наше восприятие чисел не является ни врожденным, ни объективным. Оно накрепко связано с тем, как мы изучали математику.
Впрочем, давайте ненадолго забудем о наших знаниях и культурных предубеждениях и вернемся к изначальному восприятию чисел. Как бы мы мыслили, если бы с детства не сталкивались со школьной математикой?
Это можно попытаться выяснить у людей, которых эти знания обошли стороной. Например, у детей, еще слишком маленьких, чтобы углубиться в изучение чисел. Или у туземцев, чье отношение к числам, свободное от условностей и предвзятостей цивилизации, сильно отличается от нашего.
В 2000-х годах исследовательские группы проводили различные эксперименты, чтобы ответить на эти вопросы. Маленьким детям из Соединенных Штатов, а также представителям народа мундуруку, живущего в лесах Амазонии на севере Бразилии, предложили выполнить тесты, очень похожие на те, которые я вам продемонстрировал. В языке этого индейского народа нет слов для обозначения чисел больше пяти их восприятие величин радикально отличается от нашего.
Испытуемым показывали отрезки, концы которого соответствовали двум числам. А затем их просили разместить на этом отрезке другие числа. Конечно, числа должны были быть представлены в форме, понятной людям, которые никогда не изучали математику. Эти тесты проводились в разных форматах: например, визуально с изображениями, содержащими несколько точек, или на слух, при помощи звуковых сигналов. Перед началом теста испытуемым тщательно объясняли правила.
Полученные результаты последовательны и однозначны: дети и мундуруку интуитивно воспринимают числа скорее мультипликативно, чем аддитивно. Вот, например, как индейцы разместили числа на отрезке от 1 до 10.
Конечно, этот тест не идеален. Он слишком интуитивен, а точно оценить значение сразу нескольких показателей навскидку совсем не просто. Так, мы видим, что число 5 на шкале в среднем располагали за числом 6! Но важно не это. Важно отметить, как широко расставлены малые числа, в то время как бо́льшие громоздятся друг на друге в конце отрезка. Как будто небольшие числа, такие как 1 и 2, имеют большее значение, чем такие как 8 и 9 те вынуждены тесниться.
Не кажется ли вам, что у этих результатов есть некое сходство с законом Бенфорда? Это простое совпадение или же мы на пороге какого-то открытия? Сейчас связь между ними не очевидна, но давайте запомним эту идею вскоре у нас будет возможность вернуться к ней.
Эта тенденция подтверждается во всех проведенных тестах. Включая и тесты на числа до 100, которые проводились с детьми. Например, чаще всего ребенок на отрезке от 1 до 100 отметит 10 примерно посередине. Результат интригует: ведь поставить 10 ровно между 1 и 100 можно, только если мы мыслим мультипликативно.
Что, если мы пойдем еще дальше?
В XX веке было проведено несколько экспериментов, доказывающих, что такое восприятие чисел свойственно не только человеку. Что это можно проследить и у других видов, не только Homo sapiens.
Многие животные обладают естественным чувством количества. Хотя бы для того, чтобы оценить объем пищи, который им нужно накопить, или количество хищников, которых им нужно избежать, чтобы выжить. Их чувство величины довольно приблизительно и ограниченно по сравнению с человеческим, тем не менее удивительно.
Условия экспериментов с животными и интерпретация их результатов требуют гораздо более тонкого и тщательного подхода. С лошадьми, птицами или шимпанзе невозможно вести прямой диалог, подробно объяснить им правила эксперимента или заставить их понять цель того, что они делают. Однако некоторые факты поражают, потому что, похоже, некоторые животные воспринимают числа мультипликативно.
Вот пример эксперимента с крысами. Несколько особей поместили в клетки, внутри которых находились два рычага. Затем исследователи регулярно подавали крысам серию звуковых сигналов. Иногда два сигнала, иногда восемь. Когда было всего два звуковых сигнала, крысам давали пищу при условии, что они нажимали на первый рычаг. Когда сигналов было восемь при нажатии на второй рычаг. Некоторое время спустя грызуны поняли принцип и научились правильно нажимать на рычаг в зависимости от количества звуковых сигналов.
После того как крысы научились работать с рычагами, начался сам эксперимент. Что произойдет, если изменить количество звуковых сигналов? После трех сигналов, немного помедлив, крысы шли к первому рычагу, как в случае с двумя звонками. После пяти, шести или семи сигналов крысы выбирали второй рычаг, как в случае с восемью. Но после четырех сигналов они запутались! Половина крыс нерешительно подходила к первому рычагу, а другая половина ко второму. Как будто для них число четыре оказывалось посередине между двумя и восемью, делая их выбор совершенно случайным.