Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 - Александр Юрьевич Чесалов 2 стр.



Автоматизация (Automation)  это технология, с помощью которой процесс или процедура выполняется с минимальным участием человека9.


Автоматизированная обработка персональных данных (Automated processing of personal data)  это обработка персональных данных с помощью средств вычислительной техники10.


Автоматизированная система (Automated system)  это организационно-техническая система, которая гарантирует выработку решений, основанных на автоматизации информационных процессов во всевозможных отраслях деятельности11.


Автоматизированная система управления (Automated control system)  это комплекс программных и программно-аппаратных средств, предназначенных для контроля за технологическим и (или) производственным оборудованием (исполнительными устройствами) и производимыми ими процессами, а также для управления такими оборудованием и процессами12.


Автоматизированное мышление (Automated reasoning)  это область информатики, которая занимается применением рассуждений в форме логики к вычислительным системам. Если задан набор предположений и цель, автоматизированная система рассуждений должна быть способна автоматически делать логические выводы для достижения этой цели13.


Автономное транспортное средство (Autonomous vehicle)  это вид транспорта, основанный на автономной системе управления. Управление автономным транспортным средством полностью автоматизировано и осуществляется без водителя при помощи оптических датчиков, радиолокации и компьютерных алгоритмов14.


Автономность (Autonomous)  это способность машины выполнять свою задачу без вмешательства и контроля человека15.


Автономные вычисления (Autonomic computing)  это способность системы к адаптивному самоуправлению собственными ресурсами для высокоуровневых вычислительных функций без ввода данных пользователем16.


Автономный автомобиль (Autonomous car)  это транспортное средство, способное воспринимать окружающую среду и работать без участия человека. Пассажир-человек не обязан брать на себя управление транспортным средством в любое время, и пассажиру-человеку вообще не требуется присутствовать в транспортном средстве. Автономный автомобиль может проехать везде, где ездит традиционный автомобиль, и делать все то же, что и опытный водитель-человек17.


Автономный вывод (Offline inference)  это генерация группы прогнозов, сохранение этих прогнозов, а затем извлечение этих прогнозов по запросу18.


Автономный искусственный интеллект (Autonomous artificial intelligence)  это биологически инспирированная система, которая пытается воспроизвести устройство мозга, принципы его действия со всеми вытекающими отсюда свойствами19,20.


Автономный робот (Autonomous robot)  это робот, который спроектирован и сконструирован так, чтобы самостоятельно взаимодействовать с окружающей средой и работать в течение длительных периодов времени без вмешательства человека. Автономные роботы часто обладают сложными функциями, которые могут помочь им воспринимать физическое окружение и автоматизировать действия и процессы, которые раньше выполнялись руками человека21.


Авторегрессионная модель (Autoregressive Model)  это модель временного ряда, в которой наблюдения за предыдущими временными шагами используются в качестве входных данных для уравнения регрессии для прогнозирования значения на следующем временном шаге. В статистике и обработке сигналов авторегрессионная модель представляет собой тип случайного процесса. Он используется для описания некоторых изменяющихся во времени процессов в природе, экономике и т.д.22.


Агент (Agent) в обучении с подкреплением  это испытуемая система, которая обучается и взаимодействует с некоторой средой. Агент воздействует на среду, а среда воздействует на агента23.


Агрегат (Aggregate)  это сумма, созданная из более мелких единиц. Например, население области  это совокупность населения городов, сельских районов и т.д., входящих в состав области. Суммировать данные из меньших единиц в большую единицу24.


Агрегатор (Aggregator)  это тип программного обеспечения, которое объединяет различные типы веб-контента и предоставляет его в виде легкодоступного списка. Агрегаторы каналов собирают такие данные, как онлайн-статьи из газет или цифровых изданий, публикации в блогах, видео, подкасты и т. д. Агрегатор каналов также известен как агрегатор новостей, программа для чтения каналов, агрегатор контента или программа для чтения RSS25.


Агломеративная кластеризация (Agglomerative clustering)  это один из алгоритмов кластеризации, в котором процесс группировки похожих экземпляров начинается с создания нескольких групп, где каждая группа содержит один объект на начальном этапе, затем он находит две наиболее похожие группы, объединяет их, повторяет процесс до тех пор, пока не получит единую группу наиболее похожих экземпляров26.


Адаптивная система (Adaptive system)  это система, которая автоматически изменяет данные алгоритма своего функционирования и (иногда) свою структуру для поддержания или достижения оптимального состояния при изменении внешних условий27.


Адаптивная система нейро-нечеткого вывода (Adaptive neuro fuzzy inference system) (ANFIS) (также адаптивная система нечеткого вывода на основе сети)  это разновидность искусственной нейронной сети, основанная на системе нечеткого вывода Такаги-Сугено. Методика была разработана в начале 1990-х годов. Поскольку она объединяет как нейронные сети, так и принципы нечеткой логики, то может использовать одновременно все имеющиеся преимущества в одной структуре. Его система вывода соответствует набору нечетких правил ЕСЛИ-ТО, которые имеют возможность обучения для аппроксимации нелинейных функций. Следовательно, ANFIS считается универсальной оценочной функцией. Для более эффективного и оптимального использования ANFIS можно использовать наилучшие параметры, полученные с помощью генетического алгоритма28.


Адаптивный алгоритм (Adaptive algorithm)  это алгоритм, который пытается выдать лучшие результаты путём постоянной подстройки под входные данные. Такие алгоритмы применяются при сжатии без потерь. Классическим вариантом можно считать Алгоритм Хаффмана29,30.


Адаптивный градиентный алгоритм (Adaptive Gradient Algorithm) (AdaGrad)  это cложный алгоритм градиентного спуска, который перемасштабирует градиент отдельно на каждом параметре, эффективно присваивая каждому параметру независимый коэффициент обучения31.


Аддитивные технологии (Additive technologies)  это технологии послойного создания трехмерных объектов на основе их цифровых моделей («двойников»), позволяющие изготавливать изделия сложных геометрических форм и профилей32.


Айзек Азимов (Isaac Asimov) (19201992)  автор научной фантастики, сформулировал три закона робототехники, которые продолжают оказывать влияние на исследователей в области робототехники и искусственного интеллекта (ИИ)33.


Три закона робототехники Айзека Азимова (Three Laws of Robotics by Isaac Asimov)  Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред. Робот должен подчиняться приказам, отданным ему людьми, за исключением случаев, когда такие приказы противоречат Первому закону. Робот должен защищать свое существование до тех пор, пока такая защита не противоречит Первому или Второму закону34.


Активное обучение/Стратегия активного обучения (Active Learning/ Active Learning Strategy)  это особый способ полууправляемого машинного обучения, в котором обучающий агент может в интерактивном режиме запрашивать оракула (обычно человека-аннотатора) для получения меток в новых точках данных. Подход к такому обучению основывается на самостоятельном выборе алгоритма некоторых данных из массы тех, на которых он учится. Активное обучение особенно ценно, когда помеченных примеров мало или их получение слишком затратно. Вместо слепого поиска разнообразных помеченных примеров алгоритм активного обучения выборочно ищет конкретный набор примеров, необходимых для обучения35,36,37.


Алгоритм (Algorithm)  это точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Мусы аль-Хорезми, который еще в 9 веке (ок. 820 г. н.э.) предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Также, алгоритм  это набор правил или инструкций, данных ИИ, нейронной сети или другим машинам, чтобы помочь им учиться самостоятельно; классификация, кластеризация, рекомендация и регрессия  четыре самых популярных типа38.


Алгоритм BLEU (BLEU)  это алгоритм оценки качества текста, который был автоматически переведен с одного естественного языка на другой. Качество считается соответствием между переводом машины и человека: «чем ближе машинный перевод к профессиональному человеческому переводу, тем лучше»  это основная идея BLEU39.


Алгоритм Q-обучения (Q-learning)  это алгоритм обучения, основанный на ценностях. Алгоритмы на основе значений обновляют функцию значений на основе уравнения (в частности, уравнения Беллмана). В то время как другой тип, основанный на политике, оценивает функцию ценности с помощью жадной политики, полученной из последнего улучшения политики. Табличное Q-обучение (при обучении с подкреплением) представляет собой реализацию Q-обучения с использованием таблицы для хранения Q-функций для каждой комбинации состояния и действия. «Q» в Q-learning означает качество. Качество здесь показывает, насколько полезно данное действие для получения вознаграждения в будущем40.


Алгоритм дерева соединений (также алгоритм Хьюгина) (Junction tree algorithm)  это метод, используемый в машинном обучении для извлечения маргинализации в общих графах. Граф называется деревом, потому что он разветвляется на разные разделы данных; узлы переменных являются ветвями41,42.


Алгоритм любого времени (Anytime algorithm)  это алгоритм, который может дать частичный ответ, качество которого зависит от объема вычислений, которые он смог выполнить. Ответ, генерируемый алгоритмами anytime, является приближенным к правильному. Большинство алгоритмов выполняются до конца: они дают единственный ответ после выполнения некоторого фиксированного объема вычислений. Однако в некоторых случаях пользователь может захотеть завершить алгоритм до его завершения. Эта особенность алгоритмов anytime моделируется такой теоретической конструкцией, как предельная машина Тьюринга (Бургин, 1992; 2005)43.


Алгоритм обучения (Learning Algorithm)  это фрагменты кода, которые помогают исследовать, анализировать и находить смысл в сложных наборах данных. Каждый алгоритм представляет собой конечный набор однозначных пошаговых инструкций, которым машина может следовать для достижения определенной цели. В модели машинного обучения цель состоит в том, чтобы установить или обнаружить шаблоны, которые люди могут использовать для прогнозирования или классификации информации. Они используют параметры, основанные на обучающих данных  подмножестве данных, которое представляет больший набор. По мере расширения обучающих данных для более реалистичного представления мира, алгоритм вычисляет более точные результаты44.


Алгоритм оптимизации Адам (Adam optimization algorithm)  это расширение стохастического градиентного спуска, который в последнее время получил широкое распространение для приложений глубокого обучения в области компьютерного зрения и обработки естественного языка45.


Алгоритм оптимизации роя светлячков (Glowworm swarm optimization algorithm)  это метаэвристический алгоритм без производных, имитирующий поведение свечения светлячков, который может эффективно фиксировать все максимальные мультимодальные функции46.


Алгоритм Персептрона (Perceptron algorithm)  это линейный алгоритм машинного обучения для задач бинарной классификации. Его можно считать одним из первых и одним из самых простых типов искусственных нейронных сетей. Это определенно не «глубокое» обучение, но это важный строительный блок. Как и логистическая регрессия, он может быстро изучить линейное разделение в пространстве признаков для задач классификации двух классов, хотя, в отличие от логистической регрессии, он обучается с использованием алгоритма оптимизации стохастического градиентного спуска и не предсказывает калиброванные вероятности47.


Алгоритм поиска (Search algorithm)  это любой алгоритм, который решает задачу поиска, а именно извлекает информацию, хранящуюся в некоторой структуре данных или вычисленную в пространстве поиска проблемной области, либо с дискретными, либо с непрерывными значениями48.


Алгоритм пчелиной колонии (алгоритм оптимизации подражанием пчелиной колонии, artificial bee colony optimization, ABC) (Bees algorithm)  это один из полиномиальных эвристических алгоритмов для решения оптимизационных задач в области информатики и исследования операций. Относится к категории стохастических биоинспирированных алгоритмов, базируется на имитации поведения колонии медоносных пчел при сборе нектара в природе49.


Алгоритмическая оценка (Algorithmic Assessment)  это техническая оценка, которая помогает выявлять и устранять потенциальные риски и непредвиденные последствия использования систем искусственного интеллекта, чтобы вызвать доверие и создать поддерживающие системы вокруг принятия решений ИИ50.


Алгоритмическая предвзятость (Biased algorithm)  это систематические и повторяющиеся ошибки в компьютерной системе, которые приводят к несправедливым результатам, например, привилегия одной произвольной группы пользователей над другими51,52.


Алгоритмы машинного обучения (Machine learning algorithms)  это фрагменты кода, которые помогают пользователям исследовать и анализировать сложные наборы данных и находить в них смысл или закономерность. Каждый алгоритм  это конечный набор однозначных пошаговых инструкций, которые компьютер может выполнять для достижения определенной цели. В модели машинного обучения цель заключается в том, чтобы установить или обнаружить закономерности, с помощью которых пользователи могут создавать прогнозы либо классифицировать информацию. В алгоритмах машинного обучения используются параметры, основанные на учебных данных (подмножество данных, представляющее более широкий набор). При расширении учебных данных для более реалистичного представления мира с помощью алгоритма вычисляются более точные результаты. В различных алгоритмах применяются разные способы анализа данных. Они часто группируются по методам машинного обучения, в рамках которых используются: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением. В наиболее популярных алгоритмах для прогнозирования целевых категорий, поиска необычных точек данных, прогнозирования значений и обнаружения сходства используются регрессия и классификация53.

Назад Дальше