В связи с тем что уровень проникновения Интернета и количество интернет-пользователей в Китае значительно возрастают, персональные данные становятся все более доступными для правительства, причем постоянно[15]. При этом необходимо понимать, что система социального кредита не является единой, а представляет собой сеть различных коммерческих и правительственных систем рейтингов, санкций и вознаграждений[16]. В соответствии с планом китайского правительства предусматривается создание нескольких кредитных систем в следующих основных сферах: государственной, коммерческой, социальной и судебной[17].
Кроме того, частные субъекты также участвуют в схемах кредитного скоринга. В 2015 г. компания Alibaba запустила собственную систему кредитного скоринга Sesame Credit, которая ранжирует пользователей не только на основе их покупок, но и на информации о покупательских привычках их друзей. Результаты Sesame могут выступать основанием для определения размера страховой премии, а также того, каким образом будет осуществлен осмотр человека службой безопасности в аэропорту или размещены анкеты пользователя (от места расположения анкеты зависит больший или меньший охват аудитории) на сервисах онлайн-знакомств[18]. Таким образом, оценка Sesame может оказать влияние на повседневную жизнь его пользователей. Несмотря на то что система предлагает удобство для многих граждан, преимущество и удобство для одних означают санкции и исключение для других[19]. При этом такой скоринг является добровольным (круг вовлеченных лиц ограничивается пользователями данной системы) в отличие от системы социального кредита, которая носит обязательный характер. Тем самым круг участников скоринга становится неограниченным, как и возможности для применения различного рода санкций[20].
Помимо этого частные субъекты сотрудничают с правительством в целях создания централизованной кредитной инфраструктуры. Данные частных акторов используются для улучшения центральной кредитной системы, взамен они получают данные из правительственных баз данных[21]. Например, многоцелевое приложение для социальных сетей WeChat делится данными миллиарда своих пользователей с правительством Китая, основываясь на различного рода активности пользователей, как, например, социальные взаимодействия и онлайн-покупки. Так, на уровне местных кредитных систем граждане могут проверить свой личный счет, используя WeChat[22].
В литературе встречается точка зрения, согласно которой система социального кредита рассматривается в качестве инфраструктуры наблюдения, включающей практически всех участников общества должностных лиц, отдельных индивидов, государственные учреждения и корпорации, группы. Ввиду того что генерация данных отделена от анализа данных, третья сторона также становится участником в практике наблюдения, в то время как субъекты данных необязательно знают, как используются их данные. Возможности для наблюдения значительно расширяются, по мере того как правительство использует новые технологии. Такие технологии позволяют осуществлять более тонкое и скрытое наблюдение по сравнению с традиционными инструментами, поскольку политические цели заранее встроены в алгоритмы. В результате владение данными определяет распределение полномочий, а обмен данными приводит к умышленному искажению транспарентности и подотчетности[23]. Последнее еще более усугубляется алгоритмами машинного обучения, которые обрабатывают поведенческие данные и создают зачетные баллы (кредиты). Система регулируется национальным и местным законодательством, но по-прежнему наблюдается значительное отсутствие надлежащих правовых рамок для защиты конфиденциальности и персональных данных. Кроме того, открытым остается вопрос относительно того, все ли государственные структуры будут подчиняться этой системе или же определенные сегменты высшего руководства Коммунистической партии Китая будут исключены.
Влияние системы социального кредита на права человека. Право на неприкосновенность частной жизни в соответствии с системой социального кредита строго ограничено, поскольку личные подробности частной и общественной жизни людей становятся датафицированными (осуществляется сбор, обработка и использование результатов обработки больших данных) в отсутствие полного согласия с их стороны. Эти данные собирают и тщательно изучают в целях осуществления социального контроля, и правительство может использовать как данные, так и метаданные для прогнозирования и выработки политических решений. В данном контексте отсутствуют право на забвение, а также вопрос повторной идентификации, поскольку в основу данной системы заложено хранение «сокровищницы» личных данных. Это, безусловно, дает Китаю технические преимущества в сфере использования искусственного интеллекта велика вероятность, что Китай выиграет гонку в сфере цифрового ИИ, поскольку разработчики в области информационных технологий будут иметь неограниченный доступ к данным по крайней мере по сравнению с разработчиками из европейских стран, в которых существуют строгие правила в отношении персональных данных. Однако нельзя сбрасывать со счетов вопросы обеспечения кибербезопасности и защиты данных. Как утверждается, Китай имеет достаточно плохие показатели безопасности данных, в связи с чем личная информация становится легкодоступной, что делает систему социального кредита уязвимой для взлома и незаконного доступа[24].
Таким образом, система социального кредита бросает вызов неприкосновенности частной жизни с точки зрения как сбора данных посредством широко распространенного наблюдения, так и обмена данными между различными организациями, в том числе между частными и публичными субъектами. Цифровые следы используются не только для целевого маркетинга или улучшения онлайн-сервисов, но и для обучения ИИ и информирования правительства о привычках, деятельности и активности людей. Камеры общественного наблюдения с технологией распознавания лиц предоставляют правительству почти полный и постоянный доступ ко всем общественным пространствам, а цифровое наблюдение с помощью крупных технологических компаний доставляет правительству информацию о частной и общественной жизни граждан. Одноранговое наблюдение дает правительству офлайн-доступ к социальным сферам, которые иным образом были бы недоступны. Использование алгоритмов машинного обучения для обработки данных в дополнение к широко распространенной практике обмена данными приводит к тому, что люди теряют право на монопольное использование своей персональной информации[25].
Кроме того, система социального кредита может привести к дискриминационной практике. Прежде всего, несмотря на планы объединения региональных систем в национальную кредитную систему, местные органы власти и администрации все равно будут определять критерии, по которым станут оцениваться отдельные лица. Из-за отсутствия единого стандарта граждане находятся во власти местных органов. В этом случае крестьяне в сельской местности могут пользоваться иной кредитной схемой, чем жители городских районов. По мере перемещения данных между секторами и учреждениями дефекты в данных в одной базе данных могут быть реплицированы во всех базах данных, через которые эти данные проходят. Тем самым любая предвзятость в данных, которая не будет должным образом «сглажена», будет продолжать находиться в потоке данных, а возможно, даже увеличиваться или изменяться в другом контексте[26].
Необходимо также иметь в виду, что получить полностью объективные данные практически невозможно. Таким образом, маркировка данных в качестве «объективных» или «необработанных» может быть вредной, поскольку она явно игнорирует потенциальную предвзятость данных. Одинаково сложно создать объективный алгоритм машинного обучения, с помощью которого можно обрабатывать данные, ранжировать граждан, а также определять, как алгоритм будет реагировать на новые данные. Ясно, что предвзятость может быть смягчена, но для этого ее существование требуется признать, что нехарактерно для Китая[27].
При этом при анализе больших данных некое пренебрежение к необходимости смягчения предвзятости данных может явиться причиной дискриминационных действий, например предиктивной полицейской деятельности. На микроуровне «подозрительные» корреляции, основанные на прогнозах больших данных, могут быть использованы против отдельных лиц, например, невозможность зачисления детей в частную школу из-за низкого социального рейтинга их родителей (что само по себе является одним из примеров косвенной дискриминации в отношении детей). Однако предвидение рисков не работает на индивидуальном уровне, и такая предиктивная полицейская деятельность, скорее всего, будет представлять собой нарушение права на равенство перед законом. В свою очередь на макроуровне система социального кредита может информировать правительство о тенденциях, общественном мнении и возможных проблемах в обществе, что может помочь правительству в прогнозировании социального контроля и выработке политической стратегии[28].
Приведенный нами обзор касательно китайского варианта обработки данных приводит к выводу о том, что его реализация в Российской Федерации невозможна ввиду очевидного конфликта с правами человека, признанными в подписанных Россией (в отличие от Китая) международных актах и имплементированных в гл. 2 российской Конституции, а также распространившихся в отраслевых актах законодательства.
Проанализированные нами в рамках основного исследования зарубежные (американские и европейские) и российские подходы к обеспечению фундаментальных прав человека при обработке данных в государственном управлении можно систематизировать по нескольким направлениям.
1.1. Правовое регулирование использования алгоритмов для обработки данных в государственном управлении
Алгоритм является базовым понятием в проблематике автоматизированной обработки данных. Начнем с того, что алгоритмы существовали задолго до того, как получили свое наименование. Они порождены необходимостью находить быстрые и эффективные решения посредством трансформации данных при помощи точных указаний, применяющихся поэтапно. В принципе обычный кулинарный рецепт это уже алгоритм, который содержит пошаговую инструкцию для достижения определенного результата. Правовая норма тоже алгоритм, содержащий набор данных, условий их применения в заданной последовательности также для достижения некоего результата (решения определенной проблемы). Выходит, право и алгоритм крайне близки по сути. Если отталкиваться от классических определений право как система норм, регулирующих отношения между людьми в обществе, и алгоритм как совокупность инструкций, разрешающих проблему, то понятие алгоритма оказывается более широким. В этом смысле право можно рассматривать как специфический алгоритм (юридический), объединяющий совокупность инструкций, разрешающих проблемы, возникающие из отношений людей в обществе[29].
Но развитие информационных технологий, успех науки информатики прочно связали понятие алгоритма с информационным обеспечением. Поэтому, произнося слово «алгоритм», мы переносимся в область программирования.
Оксфордский словарь английского языка определяет алгоритм как процесс или набор правил, которым необходимо следовать при осуществлении вычислений или других операций, связанных с решением задач, как правило, с помощью компьютера[30]. В настоящее время под алгоритмом обычно понимают либо фрагмент кода, либо компьютерное приложение, которое может быть использовано в целях оказания содействия человеку в процессе принятия решений или для выполнения действий, не требующих его непосредственного участия[31]. Так, алгоритмы уже используются при вынесении приговоров и принятии решений об условно-досрочном освобождении; для прогнозирования «мест притяжения» криминальной активности в целях содействия органам правопорядка и рационального распределения ресурсов; при персонализации результатов поиска, электронных новостных лент и рекламы; для выявления мошенничества; определения кредитных рейтингов; облегчения набора персонала, а также оказания медицинских и юридических услуг и др. Используются алгоритмы и в сфере государственного управления. В этом смысле особого внимания требуют алгоритмы, которые применяются для поддержки принятия решений. Некоторые из наиболее известных примеров использования алгоритмов связаны с процессом принятия решений, что непосредственно оказывает воздействие на права человека. Один из наиболее часто приводимых примеров в связи с этим использование алгоритмов для оценки степени риска при вынесении приговоров, учитывая, что такая оценка может иметь прямое отношение к праву человека на свободу и запрету дискриминации[32]. Подобный кейс будет рассмотрен нами ниже.
Доступность алгоритмов в совокупности с использованием оценки степени риска потенциально может повлиять на права человека, особенно в отношении тех, кто находится в уязвимом положении в ключевых областях жизни (пища, жилище, занятость). Прогнозная аналитика может применяться и для защиты детей. Например, London Council в сотрудничестве с частными поставщиками услуг использует алгоритмы, объединяя данные нескольких агентств, и применяет риск-ориентированный подход для определения вероятности жестокого обращения с ребенком или отсутствия заботы о нем. Сказанное вызывает к жизни вопросы конфиденциальности и защиты данных, а также вопросы, связанные с правом на уважение частной и семейной жизни и дискриминацией. В связи с этим прежде всего необходимо определить, можно ли использовать алгоритм для принятия решений или для содействия в его принятии, если речь идет о конкретной жизненной ситуации. Алгоритмы, управляющие большими данными, искусственный интеллект или алгоритмы машинного обучения обычно работают на основе корреляции и статистической вероятности. Однако природа таких алгоритмов, с одной стороны, заключается в генерации результатов, которые описывают поведение группы, но не адаптированы к конкретным людям внутри этой группы, а с другой не зависит от размера или качества входного набора данных[33].
В целях настоящего исследования нельзя обойти вниманием отправной научно-методологический подход, связанный с правовым осмыслением цифровых технологий в целом и алгоритмов в частности. Если в отношении технологий право «колеблется» между киберлибертарианством (утверждающим, что технологии радикально изменят право и приведут к утрате его значения перед лицом программного кода) и консервативной позицией, считающей, что право с легкостью урегулирует любые цифровые технологии в традиционном ключе, то касательно алгоритмов право изначально занимало позицию регулятора, т. е. право относится к алгоритму как объекту регулирования. При этом в юридическом смысле правовой охране подлежали не сами алгоритмы, а программы. Причем, что особенно важно для государственного управления, происходило это в рамках гражданского права, которое, как известно, распространяется на отношения с участием государства в ограниченном объеме.