Пролог: Мегатренд альтернативной энергетики в эпоху соперничества великих держав - Степченко Максим Алексеевич 4 стр.


Используемый анализ основывается на понимании того, что влияние мегатренда альтернативной энергетики на безопасность создает собственную социально-политическую повестку, гораздо более широкую, чем сумма угроз безопасности, связанных с мегатрендом. Современные научные и технологические достижения и подходы занимают место устоявшихся политических императивов, подкрепляемых как практическими выгодами, которые дают технологии, так и знаниями, которые они порождают. Траектория мегатренда наглядно иллюстрирует все более сложный ландшафт, на котором приходится ориентироваться политикам, чтобы справиться с растущими угрозами безопасности, что доказывает полезность концепции универсальной секьюритизации как стратегического инструмента в решении реальных проблем.

Мегатренд альтернативной энергетики можно рассматривать как симптом революции в глобальных стратегических отношениях. Его анализ показывает, как состояние дисбаланса, в котором находится мировая система, будет отражаться на проблемах в сфере безопасности. С завершением последнего цикла гегемонии в мировой политике после окончания холодной войны полным ходом идет переход к новому циклу. Однако гегемонам пока не удалось установить однозначное господство. Прежние гегемоны сталкиваются с конкуренцией со стороны новых держав, с инертностью и закостенелостью своих институтов, с эрозией собственной экономической и производственной базы, а также с ростом затрат на принуждение других к соблюдению установленных ими глобальных правил.

Обострение геополитической конкуренции традиционно знаменует собой переход от одной парадигмы к другой; она приводит к появлению новых глобальных тенденций, а иногда и предвосхищает их. Исторически такие переходы от одного гегемонистского цикла к другому сопровождались войной. Хотя войны неизбежно будут играть определенную роль в перестройке будущего миропорядка, это не означает, что нынешний переход также будет сопровождаться насилием. В пост-вестфальском децентрализованном мировом порядке глобальные подходы к секьюритизации потребуют постепенного переноса фокуса на отдельные области и сектора безопасности, такие как геополитика, энергетика, оборона, окружающая среда и экономика.

2. Торжественный выход на сцену  современная альтернативная энергетика примеряет мантию социально-политического, технико-экономического и идеологического мегатренда

Почему и как современные технологии альтернативной энергетики и их взаимодополняющие драйверы объединяются в социально-политический, технико-экономический и идеологический мегатренд XXI в.?

Мегатренд можно определить как совокупность процессов и событий, которые взаимодействуют и порождают «общий сдвиг в мышлении или подходе, затрагивающий страны, отрасли и организации»[44]. Тренды  это комплекс изменений в общественных отношениях и структуре общества, вызванных совокупными действиями социальных групп, сообществ и политических агентов. Они являются результатом сближения акторов для оказания давления на тех, кто обладает властью, с целью заставить их действовать. Тренды включают в себя несколько движущих сил  события, действия, объекты, отношения и процессы,  которые в результате их взаимодействия порождают новый феномен.

Развитие альтернативной энергетики вылилось в тренд, обладающий специфическими признаками, которые характеризуют его как мегатренд XXI в.: глобальный масштаб, выходящий за пределы географических границ, очевидное влияние на действия государственных и негосударственных субъектов и на общество в целом, поступательное развитие, которое указывает на долговечность и постоянство. В этой главе, после краткого обзора существующих технологий с их доказанными достижениями и ограничениями, фокус внимания сосредоточен на сходящихся и взаимодополняющих движущих силах, которые составляют мегатренд. Далее прослеживается развитие альтернативной энергетики с древних времен, через Средневековье, эпоху европейского Просвещения и индустриальный век.

На превращение альтернативной энергетики в тренд повлияло изменение представлений общества об источниках энергии с момента выхода возобновляемых источников на сцену в качестве «альтернативы» ископаемому топливу после Второй мировой войны и во время холодной войны. Процессы, сформировавшие общественное восприятие и породившие тренд, включают глобализацию, тенденции к фрагментации, возникновение мультицентрической мировой системы и импульс глобальной технологической революции.

Исследованные здесь темы намечают основные направления для анализа мегатренда альтернативной энергетики через призму развивающегося понятия безопасности. В последующих главах это послужит отправной точкой для определения подходов к безопасности в быстро меняющемся в XXI в. контексте глобальной безопасности.

2.1. Обещания альтернативной энергетики: превращение мечты в реальность?

Технологии возобновляемой энергетики, лежащие в основе мегатренда,  гидроэнергетика, ветровая и солнечная энергии и энергия, полученная из биомассы,  уже сегодня влияют на энергетический баланс. При этом ряд экспериментальных технологий  приливные, волновые, водородные, использование магнитного поля Земли и орбитальные электростанции, передающие энергию Солнца на Землю из космоса,  поражают воображение. Технологическая революция укрепляет надежды на превращение альтернативной энергетики из мечты о чистой, неисчерпаемой и доступной энергии в технологически осуществимое, коммерчески жизнеспособное и экологически чистое решение. Краткий обзор имеющихся технологий позволяет взглянуть на реальность, стоящую за этой мечтой, проливая свет на их доказанные достижения и на проблемы, препятствующие их более широкому практическому применению, а также на их наиболее очевидные последствия для безопасности.

2.1.1. Гидроэнергетика: древний возобновляемый конкурент ископаемым видам топлива

Крупномасштабная гидроэнергетика  проверенный источник энергии, на долю которого приходится более 16 % мирового производства электроэнергии и 71 % всей возобновляемой электроэнергии[45]. Она изменила энергетическую судьбу некоторых стран. В Норвегии, которая 100 лет назад была бедной страной, было развернуто крупномасштабное строительство гидроэлектростанций. Сегодня они вырабатывают практически всю электроэнергию в стране и в значительной степени ответственны за энергетическую независимость Норвегии, наравне со значительной добычей нефти. Гидроэнергетические ресурсы выгодны странам и дают очевидные преимущества.

Остается нерешенным вопрос: в какой степени крупномасштабная гидроэнергетика может способствовать устранению экологических угроз и смягчению последствий изменения климата? Многие проекты крупных плотин подвергаются критике за то, что они изменяют среду обитания диких животных, препятствуют миграции рыбы, влияют на качество воды и характер водных потоков. Некоторые проекты гидроэлектростанций обернулись откровенным провалом и экологической катастрофой. Например, плотина «Три ущелья», построенная на реке Янцзы в Китае, вызвала широкую обеспокоенность из-за возможных экологических и социальных последствий, в том числе социальную напряженность, связанную с переселением большого количества людей[46].

Социальные и экологические проблемы, которые вызывает крупномасштабная гидроэнергетика, а также ее потенциал порождения геополитических конфликтов не позволяют этой технологии стать универсальным решением проблемы глобального дефицита энергии. Возможности ее расширения также имеют естественные ограничения, такие как доступность водных ресурсов. Кроме того, разработка гидроэнергетических ресурсов может быть непомерно дорогой[47]. Несмотря на эти недостатки, такие страны, как Канада, Китай, Индия, Бразилия и другие развивающиеся страны, продолжают осуществлять амбициозные крупномасштабные гидроэнергетические проекты, многие из которых финансируются Всемирным банком и другими международными организациями.

Другой тип гидроэнергетических проектов  «русловая ГЭС»  не требует возведения больших плотин и поэтому используется с минимальным воздействием на окружающую среду. Однако эта система менее эффективна, поскольку зависит от колебаний речного течения. Гидроэнергетика малой мощности[48]  еще один вариант, который использует ряд стран. Несмотря на то что малые станции, как правило, экономически менее конкурентоспособны, чем крупные, интерес к развитию малой гидроэнергетики остается высоким в Китае, США и некоторых странах Южной и Восточной Европы. Гидроэнергетика малой мощности может включать в себя строительство новых электростанций или их пристройку к существующим плотинам, как это делается в США.

С традиционной точки зрения на безопасность развитие гидроэнергетической инфраструктуры на крупных реках, пересекающих несколько стран, создает геополитическую напряженность[49]. Это хорошо видно на примере трений между Узбекистаном, расположенным в низовьях рек, и странами, расположенными в верховьях,  Таджикистаном и Кыргызстаном. Другим ярким примером является плотина «Три ущелья» в Китае, которая ставит под угрозу доступ к воде во многих соседних странах, включая Индию, Бангладеш, Мьянму, Лаос, Таиланд, Камбоджу и Вьетнам. Разрешение таких споров становится все труднее, поскольку страны, расположенные в верховьях, стремятся восполнить дефицит энергии путем строительства гидроэлектростанций и заводов, которые, как опасаются страны низовья, могут лишить их водных ресурсов.

2.1.2. Ветер, солнце, биотопливо, геотермальная энергия  устоявшиеся технологии, которым предстоит пройти испытание сегодняшними требованиями

Помимо гидроэнергетики, существует несколько возобновляемых источников энергии, которые считаются устоявшимися и в настоящее время находятся в центре мегатренда. Лидируют в этом списке ветровая и солнечная энергии, биотопливо и геотермальная энергия.

Ветроэнергетика использует силу ветра для приведения в движение лопастей ветряных турбин[50]. Это хорошо известная технология, которая, возможно, зародилась в Персии и была привезена в Европу крестоносцами в XII в.[51]. Мощности ветроэнергетики постоянно растут, а в некоторых странах рост происходит стремительно[52]. Страны с высоким уровнем производства ветровой энергии могут снизить зависимость от ископаемых видов топлива. В 2016 г. ветроэнергетика покрывала примерно 10,4 % спроса в ЕС и занимала равную или более высокую долю, по крайней мере, в 11 странах  членах ЕС, а также в Уругвае и Коста-Рике[53].

Тем не менее существует несколько хорошо известных проблем, связанных с ветроэнергетикой. К ним относятся отсутствие инфраструктуры передачи электроэнергии, задержки в подключении к сети и недоверие со стороны части общественности. Нормативы, ограничивающие производство энергии, и существующие системы менеджмента затрудняют интеграцию больших объемов ветровой энергии в энергобалансе возобновляемых источников энергии[54]. Ветровая энергия также характеризуется нестабильностью, а низкая удельная мощность может ограничить ее широкое применение. Кроме того, скептики высказывают опасения по поводу влияния ветроэнергетики на здоровье человека, включая возможные слуховые и поведенческие эффекты, и возможного вмешательства в работу других объектов инфраструктуры. Однако риски для здоровья и другие опасности, связанные с ветряными турбинами, в своей массе остаются недостаточно обоснованными, а проблемы нестабильности поставок могут быть решены, например, путем широкого географического распределения мощности крупных «ветряных ферм», например тех, что расположены в Северном море.

В финансовом отношении ветроэнергетика часто способна конкурировать с традиционными источниками без государственных субсидий, а в некоторых случаях она достигла сетевого паритета. В 2016 г. на многих рынках, включая Бразилию, Канаду, Чили, Мексику, Марокко, Южную Африку, Турцию, Китай, Европу, США и некоторые районы Австралии, наземная ветроэнергетика уже была наиболее экономически эффективным вариантом для новых энергосистем[55]. Тем не менее ветроэнергетике необходим качественный скачок в технологическом развитии для преодоления проблем прерывистости, чтобы по-настоящему конкурировать с ископаемым топливом.

Как достоинства, так и недостатки ветроэнергетики имеют геополитические последствия. Пока General Electric в США разрабатывает новые технологии турбин, предназначенных для использования в районах со слабыми воздушными потоками, широкое распространение ветроэнергетики, в конечном итоге, будет на руку тем заинтересованным сторонам, которые имеют доступ к географическим пространствам с оптимальными ветровыми условиями. Это повлечет за собой две проблемы. Во-первых, ветровая энергия принесет пользу только некоторым странам, что, как и географическое распределение ископаемых ресурсов, может быть воспринято как фактор неравенства и эксплуатации в долгосрочной перспективе. Во-вторых, офшорная ветроэнергетика, в частности, может развязать споры о международных водных юрисдикциях и их использовании, несмотря на успешные примеры международной передачи энергии в Европе.

Солнечная энергия, теоретически, обладает самой высокой генерируемой мощностью среди всех возобновляемых источников энергии[56]. В принципе, она ограничена только сроком жизни солнца. На протяжении всей истории человечества этот тип энергии приковывал к себе внимание. В 1931 г., незадолго до смерти, Томас Эдисон сказал своим друзьям Генри Форду и Харви Файрстоуну: «Я бы поставил деньги на солнце и солнечную энергию. Какой источник энергии! Надеюсь, нам не придется ждать, пока нефть и уголь закончатся, прежде чем мы займемся этим»[57]. Несмотря на столь ранний энтузиазм, современные технологии использования солнечной энергии все еще сталкиваются с рядом проблем, которые затрудняют ее эффективное использование. Существует два основных типа технологий солнечной энергии: технологии концентрированной солнечной энергетики (concentrating solar thermal power, CSP) и фотоэлектрические технологии (photovoltaic, PV)[58]. Хотя и те и другие остаются относительно дорогостоящими методами получения энергии по сравнению с ископаемым топливом и другими возобновляемыми источниками, стоимость оборудования для PV в последние годы значительно снизилась. Цены на солнечные батареи снизились более чем в два раза (от примерно $4 за 1 Вт в 2007 г. до примерно $1,8 за 1 Вт в 2015 г.)[59]. В Средиземноморье и других климатических зонах с высоким уровнем солнечной радиации фотоэлектрические технологии быстро приближаются к сетевому паритету  это означает, что стоимость электроэнергии, вырабатываемой солнечными панелями, почти такая же, как стоимость электроэнергии, получаемой от традиционных видов топлива. Ожидается дальнейшее снижение стоимости по мере внедрения новых технологий, таких как перовскитовые солнечные элементы (элементы, включающие перовскитовые кристаллические структуры, которые просты в производстве и относительно недороги)[60]. Несмотря на популярность солнечных батарей, технология концентрации солнечной энергии имеет свои преимущества: возможность выработки и поставки энергии тогда, когда это необходимо, вне зависимости от времени захода солнца. Значительные мощности CSP находятся в США и Испании. Израиль, Марокко и Южная Африка также предпринимают шаги по применению этой технологии. Китай ввел в эксплуатацию первую установку CSP, Shouhang Dunhuang, в 2016 г.[61]. Несмотря на постоянное повышение эффективности фотоэлементов солнечных батарей, которая недавно достигла отметки в 46 %, ключом к быстрому повышению эффективности солнечной энергии может стать фотовольтаика с концентратором (concentrated photovoltaics, CPV)[62]. Преимущество метода CPV  простота его интеграции в существующие электросети.

Назад Дальше