После одного такого визита Юй забыл у них свой рюкзачок, и, когда они увидели его на стуле, возникло искушение заглянуть туда и, может быть, обнаружить там что-то, что подскажет, как высоко компания Baidu намерена продолжать поднимать ставки. Но они не стали этого делать, решив, что это было бы непорядочно. В любом случае они скоро узнали, что компания Baidu была готова заплатить гораздо больше: и 25, и 30, и 35 миллионов. И каждая такая новая заявка приходила за минуту или две до истечения часа, после чего торги, которые, казалось, вот-вот закончатся, снова продлевались.
Когда ставки поднялись так высоко, Хинтон решил сократить время на размышление с часа до тридцати минут. Цифры пошли вверх быстрее: 40 миллионов, 41 миллион, 42 миллиона, 43 миллиона «Мы чувствовали себя почти как в кино», говорит он. В один из вечеров он приостановил торги уже почти в полночь, когда цена достигла 44 миллионов. Ему нужно было хоть немного поспать.
На следующий день, примерно за полчаса до запланированного возобновления аукциона, он отправил участникам письмо о том, что начало торгов откладывается. Еще через час они получили новое письмо: аукцион завершен. Ночью Хинтон принял окончательное решение продать свою компанию Google больше не делая попыток дальнейшего повышения цены. В письме, адресованном руководству Baidu, он дал понять, что в дальнейшем любые сообщения от них будут переадресовываться его новому работодателю, хоть и не упомянул, кто именно этот работодатель.
Как он позже признался, на Google он был настроен изначально. Даже Кай Юй был уверен в том, что Хинтон в конечном счете отдаст предпочтение Google или какой-то другой американской компании, потому что с его спиной перебираться в Китай было проблематично. В этой связи Юй почитал за счастье уже то, что компания Baidu оказалась в числе претендентов. Этот аукцион, заставивший американских конкурентов пойти во все тяжкие, полагал он, показал руководителям Baidu, какой огромный потенциал на многие годы вперед таится в технологии глубокого обучения.
Хинтон остановил аукцион потому, что найти оптимальное место для проведения дальнейших исследований было для него гораздо важнее, чем получить максимально возможную цену. Когда он дал знать представителям Google, что останавливает торги на отметке 44 миллиона долларов, они поначалу решили, что он шутит, ведь цену можно было еще поднимать и поднимать. Но он не шутил, и его аспиранты так же хорошо понимали ситуацию, как и он сам. Они были ученые, а не предприниматели, и они преданы в первую очередь идее.
Но Хинтон до конца сам не сознавал, насколько ценной окажется эта идея. Никто этого не сознавал. Вместе с небольшой группой других ученых распределенных по все тем же четырем компаниям, которые участвовали в аукционе, плюс еще один американский интернет-гигант, а впоследствии плюс еще один новый стартап Хинтон и его аспиранты сумели внедрить эту идею в самое сердце IT-индустрии. Это позволило резко ускорить прогресс разработок искусственного интеллекта, включая разработки в области голосовых помощников, беспилотных автомобилей, робототехники, кибермедицины, а также хоть это и не входило в первоначальные намерения кибероружия и кибербезопасности. «Это изменило мой (и не только мой) взгляд на высокие технологии», говорит глава инженерного подразделения Google Алан Юстас.
Некоторые ученые, в частности Демис Хассабис, молодой нейробиолог и один из основателей DeepMind, даже поверили в то, что им со временем удастся создать такую машину, которая будет способна делать все, что может делать человеческий мозг, только лучше, и это позволит осуществить ту самую мечту, которая вдохновляла первопроходцев компьютерной эры. Никто не может сказать, когда такая машина появится. Но даже в обозримой перспективе распространение «умных» хоть еще и далеких от настоящего интеллекта машин будет иметь колоссальные социальные последствия. Эти могущественные технологии всегда пленяли и пугали людей, и человечество время от времени пыталось играть с ними. На этот раз ставки настолько высоки, что даже самые выдающиеся умы не представляют, куда это может нас завести. Развитие методики глубокого обучения знаменовало фундаментальные изменения в самом построении цифровых технологий. Вместо того чтобы тщательно предопределять, как должна вести себя машина правило за правилом, команда за командой, инженеры приступили к созданию машин, которые учатся решать задачи на своем собственном опыте, и этот опыт охватывает совершенно колоссальные массивы цифровой информации, которые неспособна уместить в себе никакая человеческая голова. В результате возникнет новая порода машин, которые будут не только более могущественными, чем все предыдущие, но также более таинственными и непредсказуемыми.
Когда эта технология обучения только начинала распространяться в интернете, никто еще толком не сознавал, что обучающиеся машины впитывают в себя также и все предрассудки своих создателей. Ученые, первоначально занимавшиеся их созданием, это по преимуществу белые мужчины, и все нюансы проблематики они оказались способны уловить только тогда, когда им на них указали представители нового поколения исследователей, включающего в себя женщин и небелых. По мере того, как эта технология продвигается все дальше и глубже в системы здравоохранения, государственной безопасности и в вооруженные силы, этот перекос может иметь серьезные последствия. Технология глубокого обучения обладает внутренней силой, которую до конца не способны контролировать даже сами разработчики этой технологии, особенно когда эта сила попадает в руки компаний-гигантов, движимых ненасытным стремлением к прибыли.
После того как аукцион, организованный Хинтоном, завершился и подошла к концу конференция NIPS, Кай Юй самолетом отправился в Пекин. На борту он наткнулся на научного сотрудника Microsoft, урожденного китайца по имени Ли Дэн, который тоже сыграл свою роль в аукционе. Юй и Дэн знали друг друга много лет по конференциям и семинарам, посвященным проблематике ИИ, и вот в самолете их места оказались рядом. Хинтон позаботился о том, чтобы ни одна компания, участвовавшая в аукционе, не знала, кто еще участвует, а знать очень хотелось. Дэн любил пообщаться, и они на протяжении всего многочасового перелета бурно обсуждали тему подъема технологии глубокого обучения. Но что касается их участия в аукционе, то здесь они были привязаны клятвой верности своим работодателям и потому, напрямую не говоря об этом, ходили вокруг да около, пытаясь выведать секреты друг у друга и при этом не выдать себя. Да они и без лишних слов понимали, что новая конкурентная война уже началась. Их компаниям так или иначе предстояло дать достойный ответ на этот прорыв Google. Так уж устроен мир интернет-технологий. Это было начало глобальной гонки вооружений, и эта гонка очень скоро приведет к таким последствиям, которые еще несколько лет назад казались немыслимыми.
А Джефф Хинтон тем временем возвращался поездом в Торонто. Через некоторое время он переберется в калифорнийский Маунтин-Вью, где располагается головной офис Google, но, даже став штатным сотрудником этой компании, он сохранит за собой должность профессора Университета Торонто и будет продолжать держаться за свою систему принципов и убеждений, служа примером для многих других ученых, которые вслед за ним пополнили ряды крупнейших технологических компаний. Когда его годы спустя спросили, какие все-таки компании участвовали в том аукционе, он ответил как всегда своеобразно. «Я подписал контракты, которые запрещают мне разглашать, с кем мы вели переговоры, сказал он. Один такой контракт я подписал с Microsoft, другой с Baidu, третий с Google. Так что лучше не будем об этом». DeepMind он не упомянул. Но это другая история. После аукциона на озере Тахо Демис Хассабис, основавший лондонскую лабораторию DeepMind, во многом пошел по стопам Хинтона. В чем-то его открытия вторили открытиям последнего, в чем-то он проникал в будущее даже еще дальше. Очень скоро Хассабис тоже вовлекся в глобальную гонку вооружений.
В этой книге рассказывается о Хинтоне, Хассабисе и других ученых, которые стояли у истоков этой гонки, о небольшой, но весьма разношерстной группе исследователей со всего земного шара, которые десятки лет вынашивали свою идею, порой преодолевая неприкрытый скептицизм, пока эта идея не вызрела и не вызвала невероятную, неожиданную суматоху, которая затронула жизненные интересы крупнейших мировых корпораций.
Часть первая
Машина нового типа
Глава 1
Генезис. «Мыслящее чудовище Франкенштейна, родившееся в недрах ВМС»
Седьмого июля 1958 года несколько человек
3
4
5
Как сообщает присутствовавший там газетный репортер, Розенблатт и сопровождавшие его военно-морские инженеры
6
7
8
9
10
11
12
13
«ВМС представили эмбрион
14
New York Times15
16
17
18
«Перцептрон» был одной из первых нейронных сетей, ранним воплощением той самой технологии, которую Джефф Хинтон продал за огромные деньги на аукционе более чем полвека спустя. Но прежде чем цена этой идеи достигла 44 миллионов долларов, не говоря уже о наступлении того экстравагантного будущего, предсказанного на страницах New York Times, она была надолго засунута в темный чулан науки. К началу 1970-х, когда все эти громкие прогнозы разбились о недостатки, присущие технологии Розенблатта, идея практически умерла.
* * *
Фрэнк Розенблатт родился
19
20
21
22
23
New York Times24
25
Розенблатт рассматривал этот проект
26
27
28
Его главный куратор от научно-исследовательского управления ВМС
29
30
31
32
33
34
35
36
37
не38
В декабре того же года журнал New Yorker восславил
39
40
41
42
43
44
Процесс создания Mark I был завершен
45
былЭто хитроумное изобретение работало достаточно хорошо, чтобы интерес к нему проявили не только в научно-исследовательском управлении ВМС. В течение следующих нескольких лет разработкой тех же самых идей занялись в Стэнфордском научно-исследовательском институте, а кроме того, лаборатория Розенблатта заручилась контрактами с почтовой службой США и военно-воздушными силами. Почтовая служба нуждалась в устройстве, способном автоматически прочитывать адреса на конвертах, а интерес ВВС заключался в возможности идентификации объектов на аэрофотоснимках. Но все это было делом далекого будущего. Система, разработанная Розенблаттом на тот момент, едва справлялась с распознаванием печатных букв, что было сравнительно простой задачей. Когда система анализировала карточки с изображением буквы А, каждый из фоторезисторов реагировал на определенный участок на карточке. Скажем, один из резисторов отвечает за нижний правый угол. Если в этом месте черный цвет появляется чаще, чем белый, машина придает этому участку больший «весовой коэффициент», а это означает, что он играет более значимую роль в тех математических расчетах, которые в конечном счете определяют, что является буквой А, а что нет. При прочтении новой карточки машина сможет узнать букву А, если большинство наиболее весомых участков черные. Вот и вся технология. И конечно, такая система была совершенно не приспособлена для распознавания рукописного текста, где уловить закономерности значительно сложнее.
Несмотря на очевидные недостатки своей системы, Розенблатт продолжал смотреть в будущее с оптимизмом. Другие тоже верили в то, что в последующие годы эта технология усовершенствуется и позволит решать более сложные задачи. Но вскоре она наткнулась на очень серьезное препятствие в лице Марвина Мински.
* * *
Фрэнк Розенблатт и Марвин Мински
46
47
48
49
Будучи студентом Гарвардского университета
50
51
52
53
54
Мински был лишь частью кампании, развернутой против идей Розенблатта. Как писал сам Розенблатт в своей книге, вышедшей в свет в 1962 году, его «Перцептрон» вызывал противоречивые оценки
55
56
57
58
59
Границы, отделявшие искусственный интеллект как научную дисциплину от информатики, психологии и нейробиологии, с самого начала были размытые, поскольку этой новой дисциплиной занимались представители самых разных научных школ, рассматривавшие эту тематику с разных углов и в разном контексте. Некоторые психологи, нейробиологи и даже ученые, работавшие в сфере информатики, смотрели на эти умные электронные машины так же, как смотрел на них Розенблатт: как на моделирование человеческого мозга. Другие ученые относились к этой идее с неприятием, утверждая, что компьютеры с человеческим мозгом не имеют ничего общего и что даже если они будут способны имитировать интеллект, то будут делать это по-своему. Никто из них, однако, даже близко не подошел к созданию того, что можно было бы по праву назвать «искусственным интеллектом». Основоположники этой науки, считавшие, что путь к воссозданию мозга будет достаточно быстрым, заблуждались: он оказался очень даже долгим. Их первородный грех как раз и состоял в том, что они назвали свою дисциплину «искусственным интеллектом». Это создавало у непосвященной публики впечатление, что ученые вот-вот научатся искусственно воссоздавать могущество человеческого разума, тогда как на самом деле они были очень далеки от этого.
В 1966 году несколько десятков ученых съехались в столицу Пуэрто-Рико Сан-Хуан
60
61
Это вызвало гневную реакцию со стороны сидевшего в аудитории Рона Свонгера, инженера из Корнеллской лаборатории аэронавтики, где компьютер Mark I как раз и был создан. Возмутившись тональностью, с которой был задан вопрос, он выразил недоумение, каким образом выпад Мински вообще связан с темой доклада. Мински возразил, что он не против распознавания рукописных букв как такового, а против самой концепции «Перцептрона». «У этой идеи нет будущего», сказал он. Ричард Дуда, еще один участник команды, работавшей над технологией распознавания рукописного текста, был уязвлен смехом, прозвучавшим в зале, когда Мински иронично отозвался об утверждениях, что «Перцептрон» является попыткой моделирования сети нейронов мозга. Вообще это выступление было типично для Мински, которому нравилось расшевеливать улья. Однажды, выступая перед физиками, он заявил, что в области искусственного интеллекта всего за несколько лет был достигнут более значимый прогресс, чем физики достигли за века. Но Дуда полагал, что у профессора МТИ были свои практические резоны подвергать нападкам деятельность сотрудников Стэнфорда и Корнелла: их лаборатории конкурировали за государственные заказы. Позже на той же самой конференции, когда еще один докладчик представил новую систему, предназначенную для создания компьютерной графики, Мински рассыпался в похвалах и не преминул еще раз пнуть идеи Розенблатта. «А Перцептрон на такое способен?» спросил он.
По итогам конференции Мински и его коллега по МТИ Сеймур Пейперт опубликовали книгу, посвященную искусственным нейронным сетям
62
63
Фрэнк Розенблатт пытался создать систему, которая бы училась самостоятельному поведению примерно так же, как учится человеческий мозг. В последующие годы ученые назвали этот подход «коннекционизмом», поскольку, как и мозг, такая система опирается на большое число взаимосвязанных расчетов. Но система Розенблатта была гораздо проще по сравнению с человеческим мозгом, и процесс обучения ограничивался сущими пустяками. Подобно многим другим ведущим специалистам в этой области знаний, Мински считал, что ученые не смогут создать искусственный разум, пока не проявят готовность отказаться от идей коннекционизма со всеми их ограничениями и переключиться на совершенно иной, куда более прямолинейный подход к построению искусственного интеллекта. Если нейронные сети учатся самостоятельному решению задач через анализ большого количества данных, то символическому ИИ это не нужно. Он ведет себя в соответствии с предельно конкретными инструкциями, которые вводятся в него инженерами; в этих конкретных правилах предусматривается все, что машина должна делать в каждой мыслимой ситуации, в которой она может оказаться. Такую форму ИИ назвали символической, потому что эти инструкции сообщали машине, какие конкретные операции она должна выполнять, получая определенный набор символов, то есть букв и цифр. На протяжении следующего десятилетия именно это направление доминировало в исследованиях ИИ. Это научное движение достигло своего пика