Что случилось с климатом - Рамиз Алиев 2 стр.


Расселившись по планете, человечество вскоре перестало быть пассивной частью биосферы. Воздействие человека на природу началось еще с неолита с переходом от кочевого образа жизни к оседлому. С тех пор человек активно преобразует планету, выжигая и вырубая леса, распахивая землю, все активнее потребляя водные и минеральные ресурсы, вмешиваясь в геохимические циклы. Не исключено, что наибольшую и при этом наименее осознаваемую угрозу несет именно антропогенное воздействие на климат, связанное с изменением состава атмосферы. Антропогенному влиянию на климат посвящена последняя глава книги. Куда нас оно приведет сказать трудно, ибо воздействие человека на природную среду определяется не законами термодинамики или небесной механики, а развитием технологий, политических систем и общественного сознания.

Глава 1

Климат сегодня

Освежив горячее тело

Благовонной ночною тьмой,

Вновь берется земля за дело

Непонятное ей самой.

Николай Гумилев. Поэма начала

Земля получает энергию от Солнца. Климат формируется в результате взаимодействия атмосферы, океана, суши, льдов и живой природы. Он непрерывно меняется под влиянием множества факторов, действующих в разных масштабах времени от десятилетий до миллиардов лет. Об изменениях климата мы можем судить по прямым наблюдениям, исследованиям исторических документов и природных объектов.

1.1. Климат и погода. Изменения климата

Разговоры о погоде станут интересными при первых признаках конца света.

Станислав Ежи Лец. Непричесанные мысли

В слово «погода» каждый из нас вкладывает свой смысл. Для городского жителя это в первую очередь температура воздуха и осадки. Его интерес к погоде сводится к вопросу, надеть ли шапку и брать ли зонтик. Прочные стены домов, городской транспорт, связь, надежное снабжение электричеством и водой все это резко ослабляет нашу зависимость от природных факторов. Для человека, путешествующего пешком, для крестьянина или жителя гор погода фактор, во многом определяющий его повседневность. А для рыбака из Пури в индийском штате Орисса или парапланериста в болгарском Сопоте погода вопрос жизни и смерти. И пилота будут волновать такие ее особенности, как сила и направление ветра на разных высотах, форма облаков, высота слоя инверсии и нулевой изотермы. От этого зависит, ждать ли в воздухе сильной турбулентности и стоит ли опасаться грозы.

Однако для всех нас погода нечто сиюминутное. Когда мы говорим о погоде, речь обычно идет о часах или об одном, максимум о нескольких днях. К тому же погода понятие локальное, ограниченное в пространстве несколькими километрами вокруг наблюдателя.

Погоду мы воспринимаем эмоционально, она бывает «хорошая», «отличная», «славная», «превосходная», «ужасная», «скверная», «дурная», «злая»  таковы результаты поиска в Национальном корпусе русского языка.

Когда мы говорим о климате какой-либо местности, мы имеем в виду средние значения основных погодных параметров, таких как температура и давление воздуха, влажность, сила и направление ветра. В конкретный год параметры могут существенно отличаться от средних. Жители Москвы хорошо помнят аномально жаркое лето 2010 г., когда воздух стал непрозрачным от лесных пожаров, или морозную зиму 2005/06 г. Кому-то запомнилось холодное лето 2019-го или почти бесснежная зима 2019/2020 г. Но такие вариации еще не свидетельствуют об изменениях климата. Для того чтобы выявить какую-либо закономерность, нужно задать время, за которое проводится усреднение погодных данных. Всемирная метеорологическая организация рекомендует период в 30 лет.

Пока речь идет о локальном климате, более или менее понятно, что мы имеем в виду. Когда мы рассматриваем планету в целом, эта ясность исчезает. Тут волей-неволей приходится жертвовать деталями и оперировать абстрактными, не измеряемыми непосредственно величинами, такими как средняя по планете среднегодовая температура приземного воздуха или средняя температура поверхности или глубинных вод океана.

Согласно независимым наблюдениям целого ряда вполне уважаемых организаций средняя температура[7] нашей планеты выросла за последние сто лет примерно на 1 °C. Если эти цифры не убеждают или оставляют сомнения в том, как они получены, можно посмотреть на фотографии ледников, сделанные в разных частях Земли с одного и того же ракурса в начале XX в. и сейчас,  их легко в изобилии найти в Интернете. Глобальное потепление реальность, в которой мы живем, по крайней мере, с конца 1970-х годов (рис. 1.1).

С ростом глобальной температуры тают ледники суши, а значит, растет уровень океана, со скоростью примерно 1,8 мм/год. Кроме того, примерно на 2,7 % за десятилетие сокращается площадь морских льдов в Арктике (рис. 1.2).

Рисунок 1.1 неизбежно вызывает ряд вопросов. Много это или мало 1 °C за столетие? Менялся ли климат до 1880 г.? Каков был масштаб колебаний температуры в историческую эпоху? А за время существования вида Homo sapiens? А за время существования планеты? И главное: чего нам ждать в ближайшем будущем? Для ответа на любой из этих вопросов нам нужна информация о климате прошлого.

Первая попытка систематических метеонаблюдений была предпринята в 1654 г. великим герцогом Тосканским Фердинандо II Медичи, однако основанная им сеть из девяти станций просуществовала лишь 13 лет и полученные данные не были использованы. Интенсивное развитие синоптической[8] метеорологии пришлось на середину XIX в. Отчасти этому способствовала Крымская война. 14 ноября 1854 г. сильнейший шторм разбил о скалы десятки британских и французских кораблей, стоявших на внешнем рейде Балаклавы. Тогда погиб и пароход «Принц»  по слухам, с грузом золота. Из 150 человек команды спаслось лишь шестеро. Впоследствии история этого корабля обросла легендами. Под именем «Черный Принц» он упоминается в «Листригонах» Куприна, стихотворении Бродского «Новый Жюль Верн» («Капитан, в этих местах затонул Черный Принц при невыясненных обстоятельствах»), ему посвящена одноименная поэма Николая Асеева. Впрочем, история корабля, груженного золотом, будоражила воображение не одних лишь поэтов. В 1923 г. по приказу Генриха Ягоды для подъема «Принца» была создана Экспедиция подводных работ особого назначения (ЭПРОН) при ГПУ; правда, найти «Принца» и мифическое золото так и не удалось.


Рис. 1.1. Изменение среднегодовой температуры по данным NASA (https://data.giss.nasa. gov/gistemp/graphs/). Изменение отсчитывается от среднего за период 19511980 гг.


Рис. 1.2. Изменение площади морских льдов в Арктике в 19792018 гг. (сентябрь) (National Snow, Ice Data Center https://nsidc.org)


В тот же шторм, когда погиб «Принц», французы потеряли «Генриха IV». После этого французское правительство обратилось к директору Парижской обсерватории Урбену Леверье (он еще появится на страницах этой книги) с просьбой прояснить обстоятельства развития балаклавского шторма. Для математика уровня Леверье это не было сложной задачей. Он запросил европейских метеорологов, выяснил, что шторм зародился за несколько дней до трагедии и, прежде чем дойти до Балаклавской бухты, пересек все Черное море. Стало ясно, что, будь в распоряжении моряков оперативные сводки погоды, беды бы не случилось. Леверье доложил французскому правительству о необходимости создать сеть метеорологических станций, данные с которых с помощью телеграфа должны были оперативно поступать в Париж. В 1856 г. план Леверье был реализован во Франции появилась служба погоды. А после окончания Крымской войны в 1857 г. служба погоды стала международной.

Одной из первых национальных метеослужб стал британский метеорологический департамент, созданный в 1854 г. при Министерстве торговли. Его возглавил адмирал Роберт Фицрой (рис. 1.3). Толчком к развитию синоптической метеорологии стала трагедия. 26 октября 1859 г. клипер «Роял Чартер», завершавший двухмесячный рейс из Мельбурна в Ливерпуль, попал в двенадцатибалльный шторм и разбился о скалы неподалеку от порта назначения. Катастрофа унесла 459 жизней. Большую часть пассажиров составляли рабочие австралийских золотых приисков. Возможно, если бы не золото, жертв было бы меньше у некоторых пассажиров тяжелые куски драгоценного металла были вшиты в одежду. На месте кораблекрушения дайверы до сих пор находят золотые самородки. Гибель одного из самых быстроходных судов, оснащенного, помимо парусного вооружения, паровыми двигателями, произвела мрачное впечатление на британское общество. Чтобы предотвратить подобные трагедии, Фицрой создал сеть наблюдательных станций на побережье, связанных телеграфом. Они должны были предупреждать моряков о надвигающейся буре (Burton, 1986).

В России в 1849 г. по указу царя Николая I была создана Главная физическая обсерватория. Ежедневный выпуск бюллетеней погоды она начала с 1872 г.


Рис. 1.3. Роберт Фицрой (18051865). Капитан знаменитого «Бигля», вице-адмирал Королевского флота, губернатор Новой Зеландии, основатель практической метеорологии. Фото сделано ок. 1860 г.


Итак, мы располагаем непрерывными метеонаблюдениями примерно за полтора века. Причем их трудно назвать исчерпывающими как по количеству параметров, так и по географическому охвату. Ситуация значительно улучшилась с началом космической эры, когда появилась возможность со спутников непрерывно контролировать площадь облаков, размеры ледников, температуру поверхности океана, содержание хлорофилла в морской воде и т. д. Как же узнать о том, что было 200, 300 и более лет тому назад? Ведь без этого невозможно оценить масштаб нынешних климатических изменений и выяснить их причины. Отчасти в этом нам могут помочь исторические документы. Информацию о климате более далекого прошлого можно получить по косвенным данным, исследуя осадочные породы, донные отложения, ледники. Подробнее об этом см. раздел «Элементы климатической науки» в данной главе.

1.2. Радиационный баланс Земли

Изучение климата планеты естественно начать с ее энергетического баланса. Земля получает энергию от Солнца. Тепловой поток из недр Земли невелик, от сотых до десятых долей ватта на квадратный метр. Составляя тепловой баланс, им можно пренебречь; это же касается и космического излучения.

Любое тело является источником электромагнитного теплового излучения. Оно возникает из-за движения атомов и молекул. Длина волны, при которой поток теплового излучения максимален, обратно пропорциональна температуре тела (так называемый закон смещения Вина). То есть чем горячее тело, тем выше энергия теплового излучения. Так, человеческое тело температурой 37 °C излучает в инфракрасном диапазоне с максимумом длины волны около 10 мкм. Именно это позволяет наблюдать людей с помощью приборов ночного видения. Тела с более высокой температурой, например раскаленная лава или лампочка накаливания, излучают в видимом диапазоне. Температура нити накаливания лампочки существенно ниже температуры фотосферы Солнца, потому излучение ее сдвинуто в красную область спектра в сравнении с дневным светом.

Солнечный спектр на границе атмосферы близок к спектру тела с температурой 5250 °C. Мощность солнечного излучения в пересчете на 1 м

2

2

солнечной постоянной

2

2

2

Около 30 % солнечной энергии отражается облаками, поверхностью Земли и рассеивается атмосферой обратно в космос. Остальные 70 % передаются климатической системе планеты. Примерно треть этой величины поглощается озоном и водяным паром, капельками воды в облаках и частицами пыли, нагревая атмосферу (рис. 1.4), а две трети поверхностью Земли. Эта энергия передается атмосфере путем конвекции, затрачивается на испарение воды (скрытое тепло) и испускается в виде теплового излучения в инфракрасном диапазоне. Упрощенная картина радиационного баланса поверхности Земли, ее атмосферы и планеты в целом представлена на рис. 1.4.

Мы знаем, сколько энергии Земля получает от Солнца (0,7 · 340 = 238 Вт/м

2

парниковым эффектом

2

2


Рис. 1.4. Радиационный баланс Земли. Подробнее см. (Kiehl, Trenberth, 1997)

1.3. Состав и строение атмосферы

Газовая оболочка Земли атмосфера удерживается силой тяготения. Плотность и давление воздуха с высотой уменьшаются примерно по экспоненциальному закону. Четкой границы между атмосферой и космическим пространством нет, обычно за толщину атмосферы принимают высоту в 100 км.

Атмосфера нашей планеты состоит преимущественно из азота и кислорода. Третий по распространенности компонент инертный газ аргон. В значительно меньших количествах содержатся углекислый газ, неон, гелий, метан, криптон, водород и закись азота, монооксид углерода (табл. 1.1). Кроме того, воздух может содержать до 5 % по объему паров воды[10].

Газовый состав атмосферы сформировался в результате ее эволюции; об этом будет более подробно рассказано в главе 3. Состав воздуха в масштабах нашей жизни можно считать постоянным. Большинство компонентов находятся в динамическом равновесии сколько убывает, столько же и пополняется за счет тех или иных процессов. Исключение составляют лишь те, количество которых быстро растет в результате хозяйственной деятельности человека; в первую очередь это углекислый газ и метан.

Основной источник метана болота и тундра; образуется он при бактериальном разложении органического вещества в анаэробных условиях. Антропогенные источники атмосферного метана это в основном сельское хозяйство и добыча нефти и газа. В морской воде метан практически не растворяется, а выводится из атмосферы за счет фотохимического окисления.

Основные компоненты атмосферы азот и кислород имеют биогенное происхождение. Кислород образуется при фотосинтезе, азот в результате бактериального восстановления нитратов. Аргон образуется в основном в результате радиоактивного распада калия-40, гелий при распаде урана и тория. Вулканы выбрасывают диоксиды углерода и серы, хлороводород, фтороводород и другие газы. Некоторые компоненты, например, озон, образуются in situ[11], то есть в результате процессов в самой атмосфере.

Помимо компонентов, перечисленных в таблице 1.1, в атмосфере присутствуют многие вещества в следовых количествах: углеводороды (помимо метана), перекись водорода (H

2

2

x

3

3

3

2

2

2


Таблица 1.1. ХИМИЧЕСКИЙ СОСТАВ СУХОГО ВОЗДУХА

(part per million)(part per billion).

времени пребывания


Кроме обычного кислорода, состоящего из двухатомных молекул, в воздухе есть озон модификация кислорода, состоящая из трехатомных молекул (O

3

В стратосфере озон образуется при воздействии ультрафиолетового излучения на двухатомные молекулы кислорода:

O

2

2O· (1)

O

2

+ O· O

3

(2)

Поглощая ультрафиолет в области спектра 200300 нм, озон снова расщепляется на атом и молекулу кислорода:

O

3

O

2

+ O· (3)

Атом кислорода, образовавшийся в реакции (3), снова взаимодействует с молекулой O

2

Распадается озон в результате взаимодействия с атомарным кислородом:

O

3

+ O· 2O

2

(4)

Озон разрушают оксиды азота, а также соединения галогенов, в частности фреоны. Распад озона под действием фреона можно описать так:

Назад Дальше