Категориальная слепота наступает из-за повреждения глубинных областей зрительной системы тех областей мозга, где происходит распознавание воспринимаемых образов. Поэтому те категории предметов, которые ныне доступны или недоступны нашему зрительному восприятию, тесно связаны с нашей эволюционной историей. На ранних стадиях нашей эволюции умение отличать зверей и животных от предметов и прочих неодушевленных объектов являлось фундаментальным свойством в борьбе за выживание; то же относится и к умению распознавать пищу. Тот факт, что некоторые специфические категории каким-то образом выпадают из поля нашего зрения, объясняется тем обстоятельством, что все жизненно насущные категории настолько для нас важны, что они жестко «закреплены» в нашем мозге настолько жестко, что мы в гораздо большей мере готовы к восприятию уже утвердившихся классов (животные, пища, объекты), чем к восприятию других, более современных (дома, транспорт, витрины, вывески). И когда одна из таких жестко «закрепленных» категорий вследствие повреждения мозга вдруг «выбраковывается», она полностью выпадает из нашего поля зрения.
Как мы видим
Та способность, которую мы в целом определяем как зрение (обычное зрение, как мы его понимаем и осознаем), используется для передачи зрительной информации главным маршрутом, на протяжении долгих лет подробно описанным в медицинской и узкоспециализированной литературе. Зрение начинается с особых светочувствительных клеток, расположенных в сетчатке глаза и называемых фоторецепторами. Они подразделяются на два вида: невероятно чувствительные палочковидные клетки, различающие яркость света, и клетки-колбочки, распознающие цвета и активно функционирующие только при ярком свете. Назначение обоих видов клеток трансдукция, т. е. преобразование световой информации в понятные для мозга электрические импульсы. Этот процесс возможен благодаря тому, что свет, попадая в клетку, обесцвечивает там особые химические вещества, в результате чего клетка под их действием меняет свой электрический потенциал.
Рисунок 3.2. Структура сетчатки
Как только информация преобразуется в электрические импульсы, она передается на второй слой клеток сетчатки в так называемые биполярные нейроны. Они осуществляют первичную обработку информации: реагируют или на светлые области на темном фоне, или на темные области на светлом фоне. Эта первичная и достаточно примитивная обработка позволяет выявить простейшие атрибуты или свойства окружающей среды, например водоем или море, так как они в целом отражают больше света, чем обрамляющая их суша. Поскольку самой яркой областью обычно является небо, во всяком случае в дневное время, эта их особенность позволяет различать яркие области на земле (или ближе к нижней части визуального поля, если вас больше интересует чисто техническая специфика процесса).
Для многих животных умение воспринимать любое движение это вопрос жизни и смерти, поэтому обработка визуальной картины движения является базовой в зрительной системе. Третий слой сетчатки это ганглиозные клетки, отслеживающие движение путем реакции на изменения и различия, происходящие в поле зрения. Каждая ганглиозная клетка имеет свое собственное рецептивное поле, сосредоточенное на одном участке сетчатки и простирающееся вовне. Одни клетки реагируют на свет, падающий на окружающую область, а не в середину, тогда как другие действуют совершенно противоположным образом, реагируя на свет, падающий в середину, а не на окружающую область. Они также реагируют на малейшие отклонения от этой закономерности, что делает их особенно чувствительными и восприимчивыми к движению.
На неподвижные объекты мы обращаем меньше внимания, чем на движущиеся. Кошке и собаке часто не удается отследить то, что не движется, поэтому им приходится прибегать к другим органам чувств. Сами мы воспринимаем неподвижные объекты только потому, что наш зрачок постоянно дрожит и подергивается; в медицине эти скачкообразные движения и подергивания называются саккадами. Причина их в том, что глазным нейронам приходится постоянно подстраиваться под несколько иной режим, чем если бы объекты двигались, хотя в действительности они неподвижны.
Зрительный нерв формируется из аксонов ганглиозных клеток: они достаточно длинные и в определенной точке пересекаются и соединяются. Но существует так называемое слепое пятно (мертвая зона), где зрительный нерв не соединен с сетчаткой, тем не менее вы об этом не знаете, так как ваш мозг дополняет недостающую информацию. Зрительный нерв передает информацию (для дальнейшей обработки) латеральному коленчатому телу. По пути она проходит через некую точку пересечения, называемую зрительной хиазмой, Х-образную структуру, образованную двумя перекрещивающимися зрительными нервами. Информация от правосторонней части сетчатки каждого глаза передается правому полушарию мозга, а информация от левосторонней части сетчатки левому полушарию. Итак, оба глаза доставляют сообщения и тому и другому полушарию мозга, но в левое полушарие поступает информация о правом зрительном поле, получаемая левосторонней частью сетчатки, тогда как правое получает информацию о левом зрительном поле, т. е. информацию, получаемую правосторонней частью сетчатки. Если это описание кажется вам путаным, обратитесь к рисунку 3.3.
Рисунок 3.3. Пути прохождения информации от глаза к мозгу
Когда зрительная информация достигает таламуса, она снова сортируется. Таламус состоит из шести слоев. Четыре верхних слоя реагируют на детали и цвет, а два нижних занимаются координацией информации о движении. Они реагируют только на движения и изменения, происходящие на больших пространствах зрительного поля. Таким образом, именно таламус сводит воедино и организует различные виды зрительной информации, прежде чем передать их для сознательной обработки в зрительную кору. Поэтому еще до того, как увиденное нами получает сознательную оценку, информация, воспринятая нашими глазами, подвергается основательной сортировке, причем сортировке крайне ценной с точки зрения эволюции. Действительно, умение отличать светлые зоны от темных и фиксировать движения и изменения помогает животным избегать препятствия или реагировать на них и окружающую среду, а также отыскивать потенциальные источники питания или отслеживать приближающихся хищников. Выше мы уже писали, что кое-какая часть этой информации передается непосредственно в более примитивные (а стало быть, и более древние) части мозга, вызывая мгновенную реакцию.
Но все эти процессы вполне рудиментарны. Более сложная обработка увиденного происходит в затылочной части большого мозга в области, называемой зрительной корой. Главной зоной здесь является первичная зрительная кора, или V1; ее задача осмысление всей полученной визуальной информации. Впервые эту зону головного мозга удалось выявить и четко обозначить лишь в начале ХХ века в ходе исследования раненых с повреждениями оболочки головного мозга, полученными в окопах Первой мировой войны. Исследования показали, что повреждение этой части коры неизбежно ведет к частичной или полной потере зрения, и чем серьезнее повреждение, тем полнее слепота. Другими словами, в зависимости от степени повреждения зрительной коры одни солдаты утратили способность видеть частично (они что-то воспринимали, а что-то не воспринимали совсем), тогда как другие полностью ослепли.
На более раннем этапе исследований канадскому нейрохирургу Уайлдеру Пенфилду удалось стимулировать эту область у пациентов, которым он делал операцию на мозге. Во время таких операций люди обычно сохраняют сознание, поскольку мозг лишен болевых рецепторов, так что Пенфилд в ходе операции мог задавать им вопросы, узнавая, что именно они чувствуют и какие образы им являются. Картины, являвшиеся внутреннему взору таких пациентов, весьма разнообразны: это мог быть и летящий в небе воздушный шар, и сельские пейзажи, и что-то другое. Тем самым он доказал, что зрительная кора это не просто масса мозгового вещества, что различные ее части отвечают за разные функции. Однако для того, чтобы ответить на вопрос, как именно она устроена и как работает, потребовалось великое множество дополнительных исследований, которые продолжаются и по сей день.
Зрительная кора связана с другими областями мозга, и для связи с ними она пользуется двумя основными проводящими путями. Первый вентральный зрительный тракт используется главным образом для идентификации объектов и явлений независимо от того, где они находятся, поэтому его часто называют «что» трактом; он простирается от зрительной коры до височной доли большого мозга. Второй это дорсальный зрительный тракт, используемый для локализации объектов и явлений независимо от того, что они собой представляют, поэтому его часто называют «где» трактом; он простирается от зрительной коры до теменных долей. Вместе эти два зрительных тракта дают нам возможность осознавать мир, осмысливать его и эффективно действовать в нем. Давайте теперь рассмотрим, как работают клетки нашего мозга, давая нам полноценную зрительную картину того мира, в котором мы живем.
Рисунок 3.4. Дорсальный и вентральный зрительные тракты
Как мы распознаем предметы
Выше мы рассказали о том, как наши зрительные клетки реагируют на свет и тьму, что, несомненно, является одним из основных механизмов выживания. Но наше зрение намного сложнее. Мы видим объекты, фон, окружение, людей, цвета, и все эти образы тем или иным способом обрабатываются нашим мозгом. Как это происходит?
Одно из важнейших открытий в этой области сделали нейрофизиологи Хьюбел и Визель, кропотливо изучавшие работу зрения, фиксируя действия отдельных нейронов. В 1969 году они опубликовали работу, показав, как некоторые нервные клетки первичной зрительной коры (зона V1) реагируют на линии, расположенные под специфическим углом и находящиеся только в одной части зрительного поля. Эти клетки они назвали простыми. Дальнейшие исследования показали, что простые клетки реагируют на одни и те же сигналы, воспринимаемые либо левым, либо правым глазом, и что некоторые из них реагируют также на специфические волны света, или, другими словами, на специфические цвета. Эти клетки эффективно анализируют поступающую в зрительную кору информацию и обрабатывают ее основные свойства. Затем они передают ее другим клеткам, которые Хьюбел и Визель назвали сложными. Эти клетки объединяют информацию, полученную от нескольких простых клеток, в результате чего они обретают свойство реагировать на линию, расположенную под специфическим углом в любой части зрительного поля, или на линию специфического цвета, находящуюся где бы то ни было в пределах зрительного поля. Эту информацию сложные клетки затем передают гиперсложным клеткам, реагирующим на специфические формы или очертания (рисунок 3.5).
Рисунок 3.5. Простые, сложные и гиперсложные клетки
Это означает, что наша зрительная система способна различать простые формы, очертания, а также края и границы между светлой и темной зонами. Согласно Д. Марру (1982), это все, что нам нужно, чтобы воспринимать окружающие объекты. Если мы соединим эту информацию с той, которая поступает от оптической матрицы (так Марр называет общую картину света, достигающего сетчатки), мы сможем определить контуры, т. е. края, и выявить сходные области. Объединив все это, мы получим основные структуры наблюдаемой сцены то, что Марр назвал необработанным первоначальным эскизом. И хотя этот эскиз достаточно зыбкий и размытый, он все же дает достаточно информации, чтобы мы смогли уяснить, что за объект находится перед нами, как на пиксельном рисунке 3.6.
Рисунок 3.6. Первоначальный эскиз
Но в нашем распоряжении имеется гораздо больше информации, чем та, которая содержится в оптической матрице. Наш мозг является хранилищем опыта, и этот опыт тоже помогает нам осмысливать различаемые объекты. Нам известно, например, что объекты, находящиеся далеко от нас, выглядят меньше, чем они есть на самом деле, и что близко расположенный объект может закрывать часть того, что находится на расстоянии. Мы можем также взять на вооружение законы восприятия, открытые гештальтпсихологами в первой половине ХХ века и свидетельствующие о том, что мы пусть и бессознательно, но совершенно осмысленно и конструктивно группируем биты получаемой информации (если вы хотите узнать об этом более подробно, советую прочесть мою книгу «Доступная психология»). По мере того как мы осваиваемся в окружающей среде и лучше ее узнаем, мы усваиваем и другие законы восприятия, что, согласно Марру, дает нам возможность определить объем, или массивность, объектов, которые находятся в поле нашего зрения. Правда, эта картина слишком обща и лишена подробностей: Марр описывает ее просто как комбинацию конусов и трубок, которую он назвал 2,5-мерным эскизом, поскольку она близка к трехмерному эскизу, но чуть-чуть до него не дотягивает. В результате получается контурограмма, которой вполне достаточно, чтобы мы сумели определить предмет, находящийся в поле нашего зрения.
Некоторые знатоки утверждают, что творения таких художников, как, например, Лоуренс Стивен Лаури, оттого так сильно затрагивают струны нашей души, что они воздействуют на наши первобытные зрительные механизмы: контурные фигуры на его полотнах подобны 2,5-мерному эскизу на этапе первичной дешифровки визуальной информации, поэтому они распознаются нами мгновенно. Например, мы легко устанавливаем различия между коровой, собакой или другим человеком (рисунок 3.7) и можем даже высказать предположение об отношениях, связывающих рассматриваемых людей, исходя из их позы и того положения, которое они занимают по отношению друг к другу.
Рисунок 3.7. Контурограммы коровы, собаки и человека
Мы можем легко составить представление о том, что именно находится перед нами, и отличить животное от дерева, например. А вот отличить собаку от кошки уже гораздо труднее, ибо это требует от нас более сложного знания о мире, цвете, тенях, контурах объекта и, что самое важное, умения обращаться к воспоминаниям. Благодаря всем этим атрибутам мы развиваем в себе способность распознавать и идентифицировать то, что находится в поле нашего зрения. Но все начинается со света и тени, которые идентифицируются биполярными нейронами, а затем подвергаются дальнейшему «осмыслению» простыми и сложными клетками зрительной коры.
Определение расстояний
Видеть предметы, объекты и явления это во всех отношениях прекрасное качество, но для того, чтобы суметь выжить в этом мире, нам необходимо также знать, где именно находятся все эти предметы, объекты и явления и как близко к нам они расположены. Американский психолог Джеймс Джером Гибсон, считающийся одним из известнейших психологов в области зрительного восприятия, объяснил, как именно устроено и организовано наше восприятие. Это объяснение ныне служит нам солидным подспорьем, помогающим познавать этот мир, передвигаться в нем и эффективно взаимодействовать с окружающими предметами. Например, тот факт, что у нас на лицевой стороне головы есть два глаза, означает, что каждый из них видит почти одно и то же, но с небольшой разницей. Это дает нам возможность сравнивать образы, увиденные каждым глазом, и посредством различия между ними определять, насколько далеко или близко находится от нас тот или иной предмет. Это возможно благодаря наличию в нашем мозге зрительной хиазмы, которая увязывает между собой сходную информацию, воспринятую двумя глазами. Когда информация от каждого глаза достигает наконец зрительной коры, она выстраивается рядами, колонками или, если хотите, столбцами, т. е. организуется так, что наш мозг без особых проблем может сравнивать эти два образа.