2.4. Неустановившиеся режимы работы СДЭУ
2.4.1. Пуск ГД и ввод в режим эксплуатационной нагрузки
Пуск дизеля и вывод его на эксплуатационную нагрузку является одним из наиболее ответственных и напряженных режимов работы СДУ. Последовательность действий при подготовке к пуску и пуске ГД изложены в заводских инструкциях по эксплуатации двигателей и в нормативных Правилах технической эксплуатации.
В дизельных установках без ВРШ и разобщительных муфт при пуске ГД помимо затрат энергии на интенсивное раскручивание коленчатого вала двигателя, для создания в цилиндрах при сжатии давлений и температур достаточных для надежного самовоспламенения топлива, необходимо преодолеть силу инерции массы судна, момента инерции движущихся частей двигателя и сопротивление движению судна.
При страгивании в начальный момент пуска двигатель в установках с ВФШ работает за пределами швартовной характеристики даже при наличии в регуляторе устройства защиты от перегрузок (комбинированный способ управления) будет перегружаться по крутящему моменту.
Для обеспечения надежного пуска необходима качественная топливоподготовка, установка оптимального угла опережения впрыска, подогрев охлаждающей воды и смазочного масла для прогревания дизеля, хорошее состояние топливной аппаратуры, обязательная прокачка маслом с предварительным проворачиванием вала дизеля и контролем чистоты цилиндров, соответствующее давление пускового воздуха и воздуха системы управления, надлежащее техническое состояние компрессоров, поршневых колец, пуско-реверсивной системы.
На рис. 2.6 изображена схема изменения величины крутящего момента двигателя в зависимости от частоты вращения двигателя при установке заданной первоначальной пусковой частоты вращения [6].
Рис. 2.6. Пуск двигателя при комбинированном способе управления:
I винтовая характеристика; II швартовная характеристика; III внешние характеристики двигателя (постоянная топливоподача); IV заданная регуляторная характеристика; V ограничительная характеристика
Участок 01 соответствует раскручиванию двигателя пусковым воздухом. При достижении пусковой частоты вращения в точке 1 отключается пусковой воздух и включается пусковая топливоподача, соответствующая пусковому заданию частоты вращения IV на всережимном регуляторе частоты вращения и ограничительной характеристике V.
Участок 12 соответствует резкому увеличению топливоподачи до ее пускового значения. Подвижный упор устройства защиты от перегрузки ограничивает ход сервомотора точкой 2. Если бы не было устройства защиты топливоподача увеличивалась бы до точки пересечения продолжения линии I-2 и регулировочной характеристики IV или до упора топливной рейки.
Участок 23 соответствует разгону двигателя по внешней частичной характеристике до выхода на швартовную характеристику II в точке 3. Участок 34 соответствует разгону судна. Далее в точке 4 управление топливоподачей переходит к регулятору, который снижает ее до выхода двигателя на установившийся режим в точке 5.
После пуска дизеля необходимо проверить показания всех контрольно-измерительных приборов, обратив особое внимание на давление смазочного масла, охлаждающих сред, топлива. Убедиться в отсутствии ненормальных шумов, стуков и вибрации. Проверить работу лубрикаторов смазки цилиндров [8].
Для осуществления пуска дизеля необходимо достигнуть определенной частоты вращения. При малой частоте вращения, вследствие снижения скорости движения плунжера и увеличения протечек топлива в насосных секциях ТНВД, давление нагнетания топлива резко снижается и качество распыливания его форсунками ухудшается. В двигателях с сервоприводом ТНВД и с аккумуляторными системами впрыска снижение давления впрыска не происходит.
Предусматривается три попытки пуска, различные программы и пуск с разных постов управления.
В некоторых двигателях предусмотрено отключение нескольких цилиндров для облегчения пуска за счет увеличения цикловой подачи топлива. Фирма Mitsui осуществила это на некоторых двигателях К90МС. Давление впрыска топлива в оставшихся в работе цилиндрах увеличилось. Стабильная работа ГД достигалась при 13 об/мин (тогда как номинальные обороты составляют 104 об/мин) [29]!
Ввод в режим эксплуатационной нагрузки и маневрирование.
Главный дизель после пуска или окончания маневров необходимо вводить в режим эксплуатационной нагрузки в течение времени, указанного в заводской инструкции по эксплуатации либо установленного судовладельцем. Запрещается сокращать время ввода дизеля в режим, за исключением случаев, связанных с угрозой человеческой жизни или безопасности судна.
Прогрев должен быть постепенным, чтобы не допускать перегрева и значительного изменения зазоров в сопрягаемых деталях двигателя и возникновения трещин. Более подробно вопросы ввода в эксплуатационный режим рассмотрены в [9].
Маневрирование это изменение направления движения и скорости с помощью руля, движителя, подруливающих устройств. При маневрировании происходит временное утяжеление винтовой характеристики.
При наборе скорости разгон судна теоретически идет по винтовой характеристике, которая, как правило, располагается ниже ограничительной характеристики, как, например, у МОД и СОД двигателей MAN Diesel & Turbo (рис. 3.7, 3.11), двигателей Wärtsilä RT-flex 48T-D (рис. 3.9). Но иногда и совпадает с ограничительной характеристикой (Wärtsilä W38B, см. рис. 3.12).
Однако в установках с ВРШ винтовая характеристика часто совпадает с ограничительной характеристикой (Wärtsilä L32), почти совпадает (MAN L23/30, см. рис. 3.17) или даже находится выше ее, как, например, у двигателей MAK (рис. 3.21). Тогда рекомендованная область комбинаторных характеристик находится существенно ниже.
Колебания нагрузки при маневрировании, а значит и уровня теплонапряженности зависят от возможностей регулятора частоты вращения. Если регулятор реализует ограничения по теплонапряженности и давлению наддува (UG-40TL, PGA, электронные), то больших бросков топливоподачи при наборе мощности не будет (см. рис. 2.6). Если же такие функции не поддерживаются (регулятор UG-40), то нагрузки будут больше, а чрезмерное задание по частоте (R3) может привести к кратковременному максимальному положению рейки (выход на упор, на характеристику самого полного).
Допустим была уставка (задание) регулятора (R1), соответствующая малому ходу М вперед. Устанавливаем задание (уставку) среднего хода R2 или R3. Регулятор UG-40 отработает рассогласование частот вращения. Больше рассогласование, больше подача топлива. Продолжительность подачи в зависимости от нагрузки. А интенсивность подачи топлива зависит от настройки изодромной связи. Изодром может подать топливо быстро или растянуто.
Количества подаваемого топлива будут соответстветствовать подачам данных частичных характеристик, проходящих через точки пересечения винтовой характеристики I и новых заданных регуляторных R2 (или R3), а не уровню максимальной подачи (упор рейки).
Рис. 2.7. Маневровая операция при управлении регулятором типа UG-40: I, II, III винтовые характеристики; R1, R2, R3 регуляторные характеристики; СМ Самый малый ход; М Малый ход; С Средний ход; СП Самый полный ход.
Но в начале обороты еще не выросли до уровня заданной частичной характеристики. Весь прирост энергии полученной за счет сгорания увеличения подачи топлива пойдет на приращение момента, так как должен выдерживаться баланс энергии, поэтому и линия 01 идет выше линии С (или С1). Величина прироста энергии будет, конечно, зависеть и от эффективности использования впрыснутого топлива. На эффективность сгорания влияет эпюра впрыска.
Может произойти пересечение линии 01 сначала с регуляторной характеристикой в точке 1 с последующим разгоном по регуляторной характеристике R2 до точки 3, а возможен и выход на предельное ограничение подачи топлива в точку 1 штрих (упор рейки), если задание по оборотам было большим (характеристика R3). Тогда дизель разгоняется по характеристике максимальной подачи до частоты, которой соответствует точка 2, и далее по регуляторной характеристике R3 до режима 3 штрих.
С точек 3 или 3 штрих начинается разгон судна, инерция которого значительно больше инерции ГД и валопровода. Двигателем этот режим будет восприниматься как винтовой утяжеленный II. Положение этой линии будет зависеть от момента инерции ГД, валопровода, задания оборотов, изменения механических потерь в ГД и передаче.
Разгон судна будет более медленным и закончится в точке пересечения с винтовой характеристикой I в точке 4 (или 4 штрих).
Исходя из вышеизложенного однозначная рекомендация следующая: нагружать двигатель надо поэтапно, по возможности медленно. Однако, при управлении ГД штурманом с мостика эта рекомендация может не выполняться.
Аналогично происходит переходный процесс при изменениии режима с С1 на малый ход (М) в последовательности 4 штрих 5 штрих 670.
При использовании регуляторов, реализующих ограничения по теплонапряженности и наддуву (UG-40TL, PGA, большинство электронных) ограничительная характеристика, которая будет всегда располагаться ниже линии упора, будет снижать нарастание подачи топлива (см. рис. 2.7)
2.4.2. Страгивание судна с места и его разгон
На режиме страгивания судна с места ГД может быть перегружен по крутящему моменту.
Изменение нагрузки на ГД в период разгона судна показано на рис. 2.8 [1].
Рис. 2.8. Изменение нагрузки на двигатель в период разгона судна [1].
Разгон осуществляется ступенчато. Рукоятка управления регулятором последовательно с выдержкой по времени фиксируется в нескольких промежуточных положениях. На каждом промежуточной регуляторной характеристике делается выдержка во времени, необходимая для стабилизации теплового состояния двигателя. При достаточном количестве ступеней разгона судна удается затрачивать меньшую работу двигателя и исключается вероятность его перегрузки.
При экстренном разгоне судна рукоятка управления после запуска двигателя сразу переводится из положения N
p1
Двигатель выходит на внешнюю номинальную характеристику. При дальнейшем разгоне судна нагрузка на двигатель будет изменяться по внешней номинальной скоростной характеристике. Двигатель неизбежно перегружается
Точка 14 характеризует нагрузку на двигатель по окончании разгона судна. Таким образом, в штатных условиях медленный разгон осуществляется ступенчато приблизительно по винтовой теоретической характеристике.
В установках с ВРШ обеспечивается более быстрое протекание процесса разгона судна благодаря возможности полного использования эффективной мощности двигателей и получению более высоких тяговых характеристик судна
2.4.3. Реверсирование главного двигателя
Неустановившиеся процессы реверсирования и его фазы рассмотрены в известной литературе [1,9,30], поэтому ограничимся лишь рассмотрением некоторых моментов важных для обеспечения безопасной эксплуатации.
При торможении контрвоздухом (или при включения муфты реверса) резко возрастает нагрузка на ГД. Во избежание механических перегрузок контрвоздух следует подавать, когда частота вращения снизится до 3040 % от номинального значения. Подача контрвоздуха при более высокой частоте малоэффективна из-за ограниченного поступления воздуха вследствие запаздывания момента открытия пусковых клапанов и недостаточности их время-сечения.
Реверсирование контрвоздухом может перевести судно на работу по более тяжелой винтовой характеристике нежели швартовная характеристика. Судно по инерции продолжает двигаться вперед, а ГД раскручивает винт на задний ход. Во избежание перегрузки двигателя по моменту следует снижать частоту вращения. А при работе на швартовых следует ограничивать частоту вращения во избежание перегрузки кормового конца коленчатого вала.
Реверсирование ГД, соединенного с ГВ через реверсивную муфту или реверсивный редуктор, осуществляется при снижении частоты вращения вала до 5070 % от номинальной.
Гидродинамические передачи улучшают реверсивные свойства СДУ и сокращают время реверсирования. Время освобождения и наполнения рабочей жидкостью полостей гидромуфт составляет 515 с. Заполнение полости заднего хода начинается до полного опорожнения полости переднего хода. Длительность торможения ГВ составляет 1030 с. Время реверсирования сокращается на 4045 % [2].
В агрегатированных многомашинных редукторных установках с гидродинамическими и разобщительными фрикционными муфтами при частых переменах хода один двигатель может работать в одном направлении, а другой в другом. Заполнение (включение) той или иной муфты быстро изменяет направление вращения гребного вала. При этом отпадает необходимость осуществлять запуски двигателей в процессе маневрирования и реверсирования судна.
При реверсировании с полного хода ГВ с помощью реверсивной муфты рукоятку ВРЧВ переводят на упор реверсирования (4550 % от номинального значения оборотов), обеспечивая работу дизеля по регуляторной характеристике. ГВ перейдет в турбинный режим работы.
Муфта выключается когда частота вращения ГВ снизится до значения соответствующего упору реверсирования. Регулятор автоматически установит подачу холостого хода. Потом рукоятка муфты переводится на задний ход. ГД нагружается по регуляторной характеристике реверсирования, останавливается, а затем его можно нагружать по винтовой характеристике заднего хода, не выходя за пределы ограничительной характеристики [1].
В судовых дизельных установках с ВРШ реверсирование осуществляется поворотом лопастей гребного винта через нулевой шаг.
При реверсировании с полного хода Вперед конечное положение лопастей следует выбирать так, чтобы ГД в любой момент реверса не перегружался и крутящий момент на валу не превышал 100 %. Если условия работы судна предполагают частое экстренное реверсирование, ГД должен иметь запас по эффективному крутящему моменту.
Оптимальный вариант реверсирования с помощью ВРШ вручную трудно осуществить. Этим требованиям удовлетворяют автоматизированные системы управления судовыми дизельными установками с ВРШ
2.4.4. Режимы работы двигателей при циркуляции судна
По характеру воздействия на ГД весь маневр циркуляции судна следует разделять на участки входа и выхода из циркуляции и участок движения с постоянным радиусом циркуляции.
Рис. 2.9. Изменение нагрузки на двигатели при циркуляции двухвинтового судна [1].
На участках входа и выхода двигатели работают на неустановившихся режимах, вызванных изменением скорости судна, угла перекладки руля, угла дрейфа.
При сохранении радиуса циркуляции ГД работают на установившихся режимах, отличных, однако, от тех, что имели место во время хода судна на прямом курсе. При циркуляции судно движется не только по радиусу, но и с дрейфом, скорость его падает при той же частоте вращения ГВ. Винты работают в косом потоке и их КПД снижается. Нагрузка на ГД возрастает [1].