Во-вторых, экспоненциальный рост, природный или антропогенный, всегда является лишь временным феноменом, заканчивающимся в результате разнообразных физических, экологических, экономических или социальных ограничений. Ядерная цепная реакция обязательно завершается (в связи с ограниченной массой расщепляющегося материала), как и схемы (пирамиды инвестиций) Понци (когда приток новых денежных средств опускается ниже выплат). Но финансовые пирамиды могут существовать довольно долго: вспомните аферу Бернарда Мейдоффа настолько продуманную схему Понци, что надзорные органы, неоднократно (хотя определенно не настолько тщательно, как следовало) проверявшие его компанию, более 30 лет не могли ни к чему прицепиться. Мейдофф получил обманным путем около $65 млрд от инвесторов, прежде чем его пирамида рухнула в результате крупнейшего со времен окончания Второй мировой войны экономического кризиса осенью 2008 года (Ross, 2016).
Рис. 1.6. Прогнозы роста авиаперевозок в США (в миллиардах пассажирокилометров) на основе данных за 19301980 годы (сверху, больше всего подходит регрессия четвертого порядка) и за 19302015 годы (снизу, больше всего подходит логистическая кривая с точкой перегиба в 1987 году). Данные из различных годовых отчетов Международной организации гражданской авиации
Вот почему долгосрочное прогнозирование на основе экспоненциального роста может оказаться некорректным. Эту мысль можно проиллюстрировать с помощью множества примеров, основанных на реальных историях, и я выбрал историю впечатляющего роста пассажиропотока авиакомпаний в США после 1950 года. В течение 1950-х годовой экспоненциальный рост составлял в среднем 11,1 %, а в 1960-х и 1970-х соответственно 12,4 и 9,4 %. График годовых показателей пассажирокилометров всех американских авиалиний в период между 1930 и 1980 годами представляет собой траекторию, почти идеально соответствующую регрессии четвертого порядка (полиномиальному уравнению четвертого порядка, где r
2
В реальности же пассажиропоток американских авиалиний пошел по траектории сокращения роста (в первом десятилетии XXI века средний годовой рост составил всего 0,9 %), а полный цикл с 1930 по 2015 год хорошо вписывается в логистическую (симметричную) кривую с четырьмя параметрами, где значение 2015 года всего в 2,3 раза выше по сравнению с 1980 годом, и дальнейший ограниченный прирост ожидается только к 2030 году (рис. 1.6). Принимать временные высокие темпы ежегодного экспоненциального роста за индикаторы будущего долгосрочного развития фундаментальная ошибка, а также стойкая привычка, особенно свойственная тем, кто продвигает новые устройства, разработки или практики: они берут темпы роста на ранних стадиях, которые часто бывают впечатляющими, и используют их, чтобы спрогнозировать неизбежное господство развивающегося феномена.
Эту ошибку можно проиллюстрировать с помощью множества свежих примеров, и я выбрал пример роста мощности ветряных турбин Vestas, установок, ведущих к сдвигу в сторону декарбонизации глобального производства электричества. Этот датский производитель начал продавать машины мощностью 55 кВт в 1981 году, к 1989 году у него была турбина мощностью 225 кВт, в 1995 году была представлена машина мощностью 600 кВт, а в 1999 году появилась турбина мощностью 2 МВт. Наиболее подходящая кривая для траектории этого быстрого роста за последние двадцать лет XX века (логистическая кривая с пятью параметрами, где R
2
В тех случаях, когда экспоненциальный рост продолжается длительное время и ставит новые рекорды, окончательная, неотвратимая сила этой реальности может казаться неприменимой. Многим рационально мыслящим людям удавалось убедить себя повторяя мантру «на этот раз все по-другому», что результаты будут умножаться в течение длительного периода. Лучшие примеры этих, часто коллективных, заблуждений можно встретить в истории рыночных пузырей, и я довольно подробно опишу два особенно примечательных недавних события: рост экономики Японии до 1990 года и Новую экономику Америки 1990-х.
Экономический подъем Японии в 1980-х является одним из лучших примеров, которые нужно учитывать людям, желающим трезво воспринимать возможности экспоненциального роста. После роста в 2,6 раза в 1970-е годы Nikkei 225 (ведущий японский индекс фондового рынка и эквивалент американского Dow Jones Industrial) вырос на 184 % в период между январем 1981 и 1986 года, затем еще на 43 % в 1986 году, почти на 13 % в 1987 году, почти на 43 % в 1988 году и еще на 29 % в 1989 году (Nikkei 225, 2017). В период между январем 1981-го и декабрем 1989 года Nikkei 225 вырос более чем в пять раз, что соответствует среднегодовому экспоненциальному росту в 17 % за десять лет и 24 % за вторую половину. Одновременно ВВП Японии продолжал расти с годовым темпом более 4 %, и обменный курс йены укрепился с ¥239/US$ в январе 1980 года до ¥143/US$ к декабрю 1989 года.
Но должна была наступить отрезвляющая развязка, и в главе 6 я расскажу о том, что происходило после 1989 года. Но экспоненциальный рост легко вводит в заблуждение, и в 1999 году, через десять лет после того как Nikkei достиг своего пика, я размышлял об опыте, пережитом Японией, ожидая арендованную машину в аэропорту Сан-Франциско. Кремниевая долина переживала годы пузыря доткомов, и, даже зарезервировав машину заранее, приходилось ждать, пока только что возвращенные автомобили обслужат и снова выпустят в самую гущу забитого Бэйшор-Фривей. Памятуя японский опыт, я думал, что каждый год после 1995-го мог быть последним периодом иррационального изобилия, как назвал его Алан Гринспен, но ни 1996-й, ни 1997-й, ни 1998-й не стали им. А многие экономисты заверяли американских инвесторов даже с большей готовностью, чем десятью годами ранее, что этот период экспоненциального роста отличается и что старые правила неприменимы к Новой экономике, в которой бесконечный быстрый рост будет продолжаться беспрепятственно.
В 1990-е Dow Jones Industrial Average предположительно под влиянием Новой экономики продемонстрировал самый высокий десятилетний рост в истории и поднялся со значения 2810 в начале января 1990 года до 11 497 в конце декабря 1999 года (FedPrimeRate, 2017). Эти показатели соответствуют годовому экспоненциальному росту в 14 % за десять лет с пиковыми значениями 33 % в 1995-м и 25 % в 1996 году. В продолжение этого роста к 2010 году уровень индекса достиг приблизительно 30 000. Nasdaq Composite Index, отражающий растущую мощь отрасли компьютерных технологий и коммуникаций (во главе с компаниями Кремниевой долины, стремительный рост капитализации которых был обусловлен биржевыми спекуляциями), продемонстрировал в 1990-х еще более высокие результаты: его экспоненциальный рост в среднем составил почти 26 % в год в период между апрелем 1991 года, когда он достиг отметки в 500 пунктов, и 9 марта 2000 года, когда он достиг 5046 пунктов (Nasdaq, 2017).
Даже обычно осторожные в высказываниях обозреватели были поражены. Джереми Сигел из Уортонской школы бизнеса не мог скрыть восхищения: «Это потрясающе. Каждый год мы говорим, что более 20 % роста снова быть не может, и снова получаем его. Я по-прежнему считаю, что нам нужно привыкать к более низкой, более нормальной прибыли, но кто знает, когда закончится эта полоса?» (Bebar, 1999). А энтузиасты зарабатывали деньги на оптовой продаже невозможного: один спрогнозировал, что Dow Jones достигнет отметки 40 000 (Elias, 2000), другой что он неизбежно поднимется до 100 000 (Kadlec and Acampora, 1999). Но конец пришел, и опять-таки довольно быстро. К сентябрю 2002 года Dow Jones упал до отметки 9945 пунктов, почти на 40 % по сравнению с пиком 1999 года (FedPrimeRate, 2017), а к маю 2002 года Nasdaq Composite рухнул почти на 77 % по сравнению с пиком в марте 2000 года (Nasdaq, 2017).
Технический прогресс также иногда развивается по экспоненте и, как я покажу в главе 3, в некоторых случаях продолжается десятилетиями. Максимальная мощность паровых турбин является прекрасным примером долгосрочного экспоненциального роста. Чарльз Алджернон Парсонс запатентовал первую модель турбины в 1884 году и почти сразу же создал маленькую установку, которую можно видеть в холле Parsons Building в Trinity College в Дублине, с мощностью всего 7,5 кВт, но первая коммерческая турбина, начавшая вырабатывать электричество в 1890 году, была в 10 раз больше и имела мощность 75 кВт (Parsons, 1936).
В результате последующего быстрого роста к 1899 году появилась первая турбина мощностью 1 МВт, через три года установка мощностью 2 МВт, в 1907 году первая модель мощностью 5 МВт, и перед Первой мировой войной максимальная мощность турбины, установленной на станции Фиск-стрит Commonwealth Edison Co. В Чикаго, составила 25 Мвт (Parsons, 1911). Между появлением первой коммерческой модели мощностью 75 кВт в 1890 году и установкой мощностью 25 МВт в 1912 году максимальная мощность паровых турбин Парсонса росла с экспоненциальной скоростью более 26 %, удваиваясь менее чем за три года. Это было значительно быстрее, чем рост мощности первых паровых двигателей в XVIII веке, когда Бенуа Фурнерон начал серийный выпуск первых моделей.
Иногда показатели растут экспоненциально благодаря не постоянному совершенствованию изначальной технологии, а серии инноваций, когда этап следующей инновации начинается там, где старая достигла своего предела: траектории индивидуального роста, несомненно, имеют S-образную форму, но огибающая кривая[5] явно носит экспоненциальный характер. История электронно-лучевых трубок, которая кратко будет изложена в главе 4, является прекрасным примером экспоненциальной огибающей кривой, охватывающей почти век прогресса. В главе 4, посвященной росту артефактов, я подробно рассмотрю самый, пожалуй, известный случай современного экспоненциального роста, продолжавшегося 50 лет: рост числа транзисторов на кремниевой микросхеме, описанный законом Мура, согласно которому оно удваивается каждые два года.
И прежде, чем оставить тему экспоненциального роста, будет уместно упомянуть простое правило расчета периода удвоения значения, идет ли речь о раковых клетках, банковских счетах или вычислительной мощности компьютеров или, наоборот, расчете темпов роста с использованием известного времени удвоения. Точные результаты получаются путем деления натурального логарифма 2 (равного 0,693)[6] на преобладающий темп роста (выраженный как доля от единицы, например 0,1 для 10 %), но довольно точный приблизительный результат можно получить, разделив 70 на темп роста, выраженный в процентах. Когда экономика Китая росла на 10 % в год, период удвоения составлял семь лет; и наоборот, удвоение числа компонентов на кремниевой пластине за два года предполагает годовой темп экспоненциального роста около 35 %.
Гиперболический рост
Неограниченный и, следовательно, на Земле только временный экспоненциальный рост не следует путать (как это иногда бывает) с гиперболическим ростом. Для экспоненциального роста характерно увеличение абсолютного темпа роста, однако он остается функцией по времени, приближенному к бесконечности. В отличие от него гиперболический рост достигает своей кульминации в абсурде (сингулярности), когда значение растущей переменной достигает бесконечности за конечный промежуток времени (рис. 1.7). Это конечное событие, конечно, невозможно в любых конечных пределах, и сдерживающая обратная связь в конечном счете окажет тормозящий эффект и прекратит гиперболический рост. Но, начавшись в низком темпе, гиперболические траектории могут развиваться в течение относительно длительных периодов времени, прежде чем их развитие остановится и сменится другой формой роста (или спада).
Рис. 1.7. Кривая гиперболического роста в сравнении с экспоненциальным ростом
Первым так называемую суперэкспансию то есть ускоряющийся рост мирового населения благодаря ускоренной эволюции цивилизаций отметил Анрэ Кайо: «вполне естественно связывать суперэкспансию человечества с присутствием Духа?»[7] (Cailleux, 1951, 70). Этот процесс соответствует квазигиперболическому уравнению: P = a/(D t)M, где a, D и M являются константами. Мейер и Валли (Meyer and Vallee, 1975, 290) пришли к выводу, что рост населения «далек от естественной склонности к состоянию равновесия демонстрирует уникальное свойство самоускорения».
Но такое возможно лишь на ограниченном временном промежутке, иначе число людей в конце концов достигло бы бесконечности. Фон Фёрстер и др. (von Foerster et al., 1960, 1291) рассчитали, что «пятница, 13 ноября 2026 года» станет Судным днем, когда «население приблизится к бесконечности, если будет расти, как росло за последние два тысячелетия». Очевидно, что это никогда не случится, и всего через несколько лет после того, как Фёрстер и его соавторы опубликовали свою работу, годовой рост мирового населения достиг пика, и начался переход к новой траектории.
Правда, Хёрн (Hern, 1999) доказывал, что рост мирового населения демонстрируют поразительные параллели с ростом раковой опухоли, так как некоторые виды рака также демонстрируют сокращение периода удвоения клеток во время самой агрессивной фазы. Начав отсчет 3 млн лет назад, он рассчитал, что к 1998 году население удваивалось 32,5 раза, а 33-й (когда оно достигнет 8,59 млрд) закончится в начале XXI века[8]. Если к антропомассе добавить биомассу домашних животных, то 33-е удвоение уже завершилось. Некоторые злокачественные опухоли вызывают смерть организма-хозяина после 3740 удвоений, и (если предположить, что тенденция продолжится) 37-е удвоение населения будет достигнуто через несколько веков.
Анализ роста мирового населения Нильсена (Nielsen, 2015) показывает, что за последние 12 000 лет наблюдалось приблизительно три периода гиперболического роста: первый между 10 000 и 500 годами до н. э., второй между 500 и 1200 годами н. э. и третий между 1400 и 1950 годами. На эти три периода пришлось около 89 % всего роста за последние 12 тысяч лет. Во время первых двух переходных периодов (с 500 года до н. э. по 500 год н. э. и 12001400) происходило значительное замедление роста народонаселения, и кривая этого роста далеко уходила от гиперболической траектории. Траектория же сегодняшнего переходного периода еще неизвестна: увидим ли мы сравнительно быстрое выравнивание и последующее длительное плато или пик, за которым последует значительный спад? О траекториях роста населения будет сказано больше в главах 5 и 6.
Существует еще один класс примечательных примеров антропогенного гиперболического роста, который отмечают многие авторы, изучающие ускоренное развитие. У этих работ длинная история: впервые они появились во второй половине XIX века (Lubbock, 1870; Michelet, 1872), а в XX веке их дополнили работы Генри Адамса, французских историков 1940-х годов и (начиная с 1950-х) многих американских историков, физиков, специалистов в области техники и информатики. Адамс писал о законе ускорения (Adams, 1919) и «законе фазы применительно к истории», согласно которым человеческое мышление предельно и интеллект в конце концов должен достичь предела своих возможностей (Adams, 1920)[9]. Мейер (Meyer, 1947) и Галеви (Halévy, 1948) писали об ускорении эволюции и об ускорении истории. Основной вклад в американскую волну с разных точек зрения внесли Фейнман (Feynman, 1959), Мур (Moore, 1965), Пил (Piel, 1972), Моравец (Moravec, 1988), Корен (Coren, 1998) и Курцвейл (Kurzweil, 2005).