Искусственный интеллект. Начало новой технологической революции: вызовы и возможности - Маков Р. С. 2 стр.


Однако с течением времени стало очевидно, что создание искусственного интеллекта задача куда более сложная, чем предполагалось изначально. Многие проблемы, которые казались тривиальными на первый взгляд, такие как распознавание объектов на изображении или понимание естественного языка, оказались чрезвычайно сложными для решения с помощью традиционных подходов. В 19601970-е годы исследования в области искусственного интеллекта обернулись рядом разочарований, и финансирование многих проектов было сокращено.

Возрождение искусственного интеллекта

В 19801990-е годы интерес к искусственному интеллекту возродился благодаря новым подходам и технологиям, таким как экспертные системы, нейронные сети и генетические алгоритмы. Экспертные системы, основанные на представлении знаний в виде правил и логических выводов, доказали свою эффективность в решении сложных задач в различных областях, таких как медицина, юриспруденция и инженерия. Нейронные сети, вдохновленные структурой и принципами работы мозга, стали популярным инструментом для обработки больших объемов данных и решения задач распознавания образов, классификации и прогнозирования. Генетические алгоритмы, основанные на принципах естественной эволюции, позволили исследователям находить оптимальные решения сложных задач в условиях ограниченных ресурсов и неопределенности.

Революция глубокого обучения

В начале XXI века искусственный интеллект вступил в новую фазу своего развития благодаря революции в области глубокого обучения. Глубокие нейронные сети, состоящие из множества слоев и способные обучаться на больших объемах данных, показали поразительные результаты в решении сложных задач, таких как распознавание речи, машинный перевод и игра в настольные игры. Важным вкладом в развитие глубокого обучения стали работы Яна Лекуна, Джеффа Хинтона и Йошуа Бенджио, которые были удостоены премии Тьюринга за свои достижения в этой области.

Искусственный интеллект сегодня

Сегодня искусственный интеллект является одной из самых активно развивающихся и влиятельных областей науки и технологии. Мощные алгоритмы машинного обучения и доступность больших объемов данных позволяют создавать системы, способные автоматизировать множество задач, которые ранее считались исключительно прерогативой человека. Искусственный интеллект внедряется в различные отрасли, включая медицину, образование, производство, финансы и развлечения, и изменяет нашу жизнь и общество.

В данном подразделе мы рассмотрели краткую историю развития компьютеров и искусственного интеллекта, начиная с создания первых электронных машин и заканчивая последними достижениями в области глубокого обучения. Мы увидели, как эволюция компьютерной техники и новые концепции и алгоритмы привели к возникновению и развитию искусственного интеллекта, который в настоящее время играет огромную роль в нашем обществе и проникает во все сферы жизни. Однако развитие искусственного интеллекта никогда не было линейным, и на его пути возникали как заметные успехи, так и разочарования. Взгляд на историю этой области позволяет нам лучше понять современные тенденции и задачи искусственного интеллекта и сформировать представление о его возможном будущем.

1.2. Текущий уровень развития технологии

1.2.1. Современные подходы к разработке ИИ: машинное обучение и глубокое обучение

Машинное обучение: основные принципы

Машинное обучение это подраздел искусственного интеллекта, который изучает алгоритмы и статистические модели, позволяющие компьютерам учиться и делать предсказания или принимать решения на основе данных. В отличие от классических алгоритмов, которые следуют строго определенным правилам, алгоритмы машинного обучения «учатся» на основе примеров, представленных в виде обучающей выборки.

Основная идея машинного обучения заключается в том, что компьютерная программа должна быть способна самостоятельно «выработать» правила и закономерности, присущие данным, а затем использовать их для решения новых задач. Машинное обучение включает в себя множество методов и подходов, таких как регрессионный анализ, деревья решений, случайные леса, опорные векторные машины и многое другое.

Глубокое обучение: прорыв в области искусственного интеллекта

Глубокое обучение это подраздел машинного обучения, который занимается изучением и разработкой нейронных сетей с большим количеством скрытых слоев (глубоких нейронных сетей). Благодаря своей структуре и способности обучения глубокие нейронные сети способны обрабатывать огромные объемы данных и выявлять сложные закономерности и зависимости, что делает их особенно эффективными в решении задач, связанных с распознаванием образов, обработкой естественного языка и рекомендательными системами.

Одним из важных достоинств глубокого обучения является его способность к автоматическому выделению признаков из данных. Вместо того чтобы полагаться на инженерию признаков и экспертные знания для определения наиболее релевантных переменных, глубокие нейронные сети самостоятельно находят наиболее информативные признаки в процессе обучения. Это позволяет упростить процесс разработки и настройки моделей и обеспечивает высокую производительность в решении сложных задач.

Основные типы глубоких нейронных сетей

Существует множество различных архитектур глубоких нейронных сетей, каждая из которых оптимизирована для решения определенных задач. Ниже приведены некоторые из наиболее популярных и широко используемых архитектур:

Сверточные нейронные сети (CNN) особенно эффективны в задачах распознавания образов и обработки изображений. Они используют специальные сверточные слои для анализа локальных свойств изображений, таких как границы, углы и текстуры.

Рекуррентные нейронные сети (RNN) применяются для обработки последовательностей данных, таких как временные ряды, аудиосигналы и текст. Рекуррентные слои сохраняют информацию о предыдущих состояниях и используют ее для прогнозирования следующих состояний.

Сети с долгосрочной краткосрочной памятью (LSTM) и гейтовые рекуррентные единицы (GRU) разновидности рекуррентных нейронных сетей, особенно эффективные в решении задач с долгосрочными зависимостями между элементами последовательности.

Трансформеры архитектура, основанная на механизмах внимания, которые позволяют моделям определять взаимосвязи между различными частями последовательности без использования рекуррентных или сверточных слоев. Трансформеры считаются наиболее эффективными для обработки естественного языка и стали основой таких моделей, как BERT, GPT и T5.

Обучение с подкреплением

Обучение с подкреплением это еще один подход к машинному обучению, который ориентирован на обучение агентов принимать решения и действовать в заданной среде, чтобы достичь определенной цели. В отличие от контролируемого обучения, где агент обучается на основе явно заданных пар входных данных и выходных результатов, в обучении с подкреплением агент использует взаимодействие со средой и получает обратную связь в виде наград или штрафов.

Обучение с подкреплением позволяет создавать интеллектуальные системы, способные обучаться оптимальным стратегиям и действиям в сложных и непредсказуемых средах. Этот подход применяется в самых разных областях, включая робототехнику, игры, оптимизацию транспортных сетей и торговые системы.

Современные подходы к разработке искусственного интеллекта, такие как машинное обучение и глубокое обучение, предоставляют мощные инструменты для создания сложных и автономных систем, способных решать широкий спектр задач и адаптироваться к новым условиям и обстоятельствам. В свете последних достижений в области глубокого обучения и нейронных сетей искусственный интеллект продолжает свое развитие и проникновение во все сферы нашей жизни, обещая принести большие изменения и новые возможности для науки, технологий и общества в целом. Однако разработка искусственного интеллекта также порождает новые вызовы и вопросы, связанные с этикой, безопасностью и воздействием на рынок труда, которые требуют осмысленного и ответственного подхода со стороны исследователей, разработчиков и общественных деятелей.

«Современные подходы к разработке искусственного интеллекта, такие как машинное обучение и глубокое обучение, предоставляют мощные инструменты для создания сложных и автономных систем, способных решать широкий спектр задач и адаптироваться к новым условиям и обстоятельствам».

1.2.2. Области применения ИИ: компьютерное зрение, обработка естественного языка, рекомендательные системы и др.

Искусственный интеллект олицетворяет собой технологическую революцию, меняющую наш мир и существенно влияющую на наши привычки, образ жизни и общество в целом. Он проникает в различные области, такие как компьютерное зрение, обработка естественного языка, рекомендательные системы и многие другие, что позволяет автоматизировать и оптимизировать процессы, которые раньше были доступны только человеку. В данном подпункте мы рассмотрим основные области применения технологии, ее возможности и перспективы.

Компьютерное зрение

Компьютерное зрение это область искусственного интеллекта, которая занимается анализом и обработкой изображений и видео с целью распознавания объектов, классификации и интерпретации визуальных данных. Основные задачи, которые решает компьютерное зрение, включают:

распознавание и классификация объектов на изображении или видео. Распознавание и классификация объектов это процесс идентификации и определения типа объектов, представленных на изображении или видео. Используя машинное обучение и нейронные сети, алгоритмы ИИ обучаются распознавать различные объекты и категории на основе предоставленных тренировочных данных. В результате обучения эти системы могут выявить и разметить объекты, определить их положение и отслеживать их перемещение. Применение включает автоматическое размещение тегов на фотографиях, распознавание номерных знаков автомобилей и анализ транспортного потока.

 определение движения объектов. Определение движения объектов это процесс анализа последовательности изображений или видео для выявления и отслеживания движения объектов. Это может включать в себя определение траектории движения, скорости и направления объектов. Технологии определения движения используются в системах видеонаблюдения, спортивном анализе, автономных транспортных средствах и робототехнике для навигации и планирования маршрутов.

 построение трехмерных моделей мира. Построение трехмерных моделей мира это процесс создания цифровых 3D-моделей реальных объектов и сцен с использованием данных, полученных с камер, радаров или других датчиков. Алгоритмы компьютерного зрения могут анализировать данные и восстанавливать структуру и геометрию окружающей среды. Применение включает в себя картографирование и навигацию в робототехнике, архитектурное моделирование, виртуальную и дополненную реальность.

 распознавание и анализ лиц. Распознавание и анализ лиц это процесс идентификации и анализа человеческих лиц на изображениях или видео. Это включает в себя определение положения лица, его ориентации, выражения лица, возраста и пола. Технологии распознавания лиц используются в безопасности для идентификации личности, анализа эмоций и предсказания возможных последующих действий человека, исходя из его психоэмоционального фона.

С применением компьютерного зрения возможны следующие практические функции:

автономные транспортные средства;

безопасность и видеонаблюдение;

робототехника;

медицинская диагностика;

сельское хозяйство и управление природными ресурсами.

Обработка естественного языка (Natural Language Processing NLP)

Обработка естественного языка является областью искусственного интеллекта, которая занимается анализом, пониманием и генерацией текста на естественном языке. NLP позволяет компьютерам понимать человеческий язык и общаться с людьми, используя естественные формы выражения.

Основные задачи NLP включают:

распознавание жестов и поведения людей. Распознавание жестов и поведения людей это процесс анализа изображений или видео для определения и интерпретации движений и действий человека. Это включает в себя определение положения и движения конечностей, а также анализ поведения, такого как ходьба, бег и взаимодействие с объектами. Применение включает в себя жестовое управление устройствами, анализ активности и безопасности, а также создание аватаров и виртуальных ассистентов.

 синтаксический анализ и морфологический разбор текста. Синтаксический анализ включает определение грамматической структуры текста, выявление отношений между словами и выражениями. Морфологический разбор представляет собой определение частей речи и морфологических характеристик слов. Они обеспечивают основу для более глубокого анализа и обработки текста.

семантический анализ и извлечение смысла из текста. Семантический анализ это процесс понимания смысла и значения текста. Это может включать определение темы, ключевых слов, сущностей и отношений между ними, а также выявление закономерностей и контекста. Это позволяет системам ИИ глубже понимать и интерпретировать человеческий язык.

генерация естественного текста. Генерация естественного текста это процесс создания текста на основе данных или информации с применением соответствующих алгоритмов. Это может включать автоматическое составление отчетов, статей, синтезирование речи и создание новых текстов на основе предыдущих данных.

машинный перевод между разными языками. Машинный перевод это автоматический процесс перевода текста с одного языка на другой с использованием алгоритмов ИИ. Современные машинные переводчики, основанные на нейронных сетях, обеспечивают более точный и плавный перевод по сравнению с традиционными методами. Применение включает перевод веб-страниц, технических документов и международной коммуникации.

определение тональности и настроения текста. Определение тональности и настроения текста это процесс анализа эмоционального окраса и отношения автора к описываемым объектам или событиям. Алгоритмы ИИ обучаются распознавать позитивные, негативные или нейтральные настроения, а также различные эмоции, такие как радость, гнев, страх или удивление. Применение включает анализ обратной связи клиентов, мониторинг социальных медиа и определение общественного мнения.

ответы на вопросы на основе данных из текстовых источников. Ответы на вопросы это процесс использования искусственного интеллекта для поиска и извлечения информации из текстовых источников для ответа на заданные вопросы. Интеллектуальные системы анализируют текст, определяют ключевые сущности и отношения и предоставляют ответы на основе найденной информации. Применение включает в себя виртуальных ассистентов, системы поддержки принятия решений и онлайн-обучение.

Назад Дальше