Осьминоги, каракатицы, адские вампиры. 500 миллионов лет истории головоногих моллюсков - Стоф Данна 3 стр.


Наблюдая великолепие современных колеоидов, сложно представить их эволюционную историю иначе, чем пример абсолютного успеха. Однако неясно, насколько велико было их изобилие и разнообразие, потому что по ископаемым находкам можно увидеть только эволюционные изменения, в том числе уменьшение раковины, а у некоторых видов и полное ее исчезновение. Мягкое тело имеет гораздо меньше шансов сохраниться в виде окаменелости, чем твердая раковина. Окаменелые раковины головоногих фигурируют в письменных источниках с древнейших времен, но первый ископаемый осьминог был описан учеными только в 1883 г. То немногое, что мы можем узнать об эволюционной истории колеоидов, позволяет предположить, что долгое время они были на вторых ролях по сравнению с аммоноидами.

С момента своего появления и на протяжении многих последующих геологических периодов аммоноиды были главным достижением эволюции головоногих. Пусть они и не дожили до того, чтобы украсить своим присутствием моря наших дней, однако их раковины  одни из самых распространенных и самых красивых окаменелостей в мире. Так как они закручены спиралями, у некоторых народов их называли змеиными камнями, а название «аммоноиды» они получили в честь бога Амона, чья голова увенчана бараньими рогами{19}.


Рис. 1.4. «Наутилусообразная» реконструкция ископаемых аммоноидов с толстым капюшоном и десятками щупалец. Ок. 1916 г, автор Генрих Хардер

Фото: C. A. Clark. Tiergarten, Berlin


Поскольку сохранившиеся от них окаменелости представляют собой закрученные внешние раковины, напоминающие раковины современных наутилусов, сначала предполагали, что и мягкие части тел живых аммоноидов по строению были подобны телам наутилусов. В художественных реконструкциях этих существ обязательно фигурируют мясистый плотный капюшон над головой аммоноида и смущающее изобилие щупалец. Дальнейшие исследования родственных связей между древними организмами показали, что аммоноиды по происхождению ближе к колеоидам, и это нашло свое отражение во всех последних художественных реконструкциях.


Рис. 1.5. «Кальмарообразная» реконструкция, опубликованная в 2015 г., на которой у каждого аммоноида 8 рук, 2 щупальца и большая мускулистая воронка

Andrey Atuchin, in A. A. Mironenko, "The soft-tissue attachment scars in Late Jurassic ammonites from Central Russia," Acta Palaeontologica Polonica 60, no. 4 (2015): 9811000


Диаметр спирали взрослых аммоноидов составлял от нескольких сантиметров до 2 м. В такую крупную раковину мог бы залезть и человек  если, конечно, внутри не находился сам аммоноид. У некоторых витки спирали были расположены довольно свободно, и между ними легко просачивалась вода; у других спирали были закручены так плотно, что кольца срастались между собой. Одни спирали были тонкими, другие толстыми, некоторые  совсем простыми, другие довольно причудливыми.

Аммоноидов было так много и эволюционировали они так быстро, что палеонтологи используют их для определения возраста горных пород. Каждый вид аммоноидов обычно можно привязать к определенному отрезку геологического времени. Например, где бы вы ни обнаружили изящную спираль Dactylioceras athleticum, можно с уверенностью утверждать, что возраст окружающей ее горной породы составляет от 175,6 до 182 млн лет.

Возможно, это кажется вам не слишком полезным? Если так, давайте вернемся немного назад и попробуем разобраться в такой «несложной» теме, как история Земли.

Каменные часы

Окаменелости обычно образуются из самих тел живых существ, но могут возникать и из их отпечатков на грунте или из экскрементов. Мир настолько переполнен телами и отходами их жизнедеятельности, что, казалось бы, мы должны спотыкаться об окаменелости на каждом шагу, но на самом деле это огромная редкость.

Вспомните последний труп, который вы видели. Скрюченный паук на подоконнике, скорее всего, высохнет и распадется в пыль. Сбитый машиной зверек, валяющийся на обочине дороги, станет пищей хищников, а оставшиеся от их трапезы кости будут поломаны, иссушены, развеяны ветром.

Эти примеры описывают то, что случается после смерти с большинством животных, по крайней мере с теми, которых не полностью съедят и переварят. Животные, которых постигнет такая судьба, не оставят после себя окаменелостей.

Крайне редко ископаемые животные сохраняются в неизменном виде, исключение составляют люди, у которых существуют определенные обычаи погребения умерших. Для образования хороших окаменелостей нужны особые обстоятельства. Извержение вулкана, смоляная (битумная) топь, сход селей. Даже янтарь, окаменевший сок деревьев, в котором сохранилась знаменитая (на самом деле выдуманная) ДНК динозавров в фильме «Парк юрского периода», однажды стал хранилищем раковины аммонита  вероятно, потому, что смола с дерева накапала на берег{20}. К сожалению, мягкие части тела аммонита уже были съедены или сгнили, так что находка в янтаре не привела к новым анатомическим открытиям.

Но даже те редкие окаменелости, которые образуются, остаются невидимыми, пока не окажутся на поверхности. Обычно это происходит в результате многолетней эрозии в сочетании с оползнями или землетрясениями, ускоряющими ход событий. Обнаруживаются окаменелости также и в результате раскопок и разрушения горных пород взрывами, и хотя мы, люди, преуспели в рытье котлованов и взрывных работах, но в общем геологическом контексте это лишь незначительные зарубки на поверхности Земли. Бóльшая часть всех окаменелостей мира залегает глубоко под нашими ногами или под океанским дном и никогда не увидит свет.


Рис. 1.6. Коллекция ископаемых аммоноидов рода Dactylioceras (ранний юрский период)

Istvan Takacs


Поскольку большинство живых организмов не оставляют окаменелостей и большинство окаменелостей так и остаются не найденными, геологи и палеонтологи проявляют объяснимый интерес к тем организмам, которые, как аммоноиды, в изобилии встречаются в виде окаменелостей. Если их много и они достаточно разнообразны, по ним можно отсчитывать время.

Люди давно знают, что горные породы Земли залегают слоями. Представление о том, что верхние слои  самые недавние, а нижние  самые старые, возникло по меньшей мере в XVI в. Но поскольку ни в те времена, ни в последующие четыре столетия никто не мог хоть сколь-нибудь достоверно оценить возраст Земли, разделение ее истории на основе слоев горных пород проводилось совсем не так, как деление дня по часам и минутам. Слои классифицировались, скорее, по своему составу: меловые, угольные или известняковые, а называли их в честь мест, где ученые впервые их описали: пермский  в Перми (Россия), девонский  в Девоне (Англия). Оба эти периода были определены и получили свое название в 1840-е гг. Вначале слои пород из разных мест казались совершенно не похожими друг на друга. Ископаемые послужили для стандартизации геологической летописи и позволили расширить употребление этих названий на весь мир.

Ученые заметили, что одни и те же окаменелости или их сочетания, в том числе многие аммоноиды, часто появлялись в разных местах. По ним, как по отпечаткам пальцев, можно было определять тот или иной отрезок геологического времени. К середине XIX в., благодаря упорному труду нескольких самоотверженных геологов и множеству давно исчезнувших головоногих, Земля обрела геологическую шкалу времени. Сотню лет спустя, благодаря уже радиометрическому датированию, мы наконец смогли нанести на нее точные даты.

Чтобы разобраться в том, что такое радиометрическое датирование, сначала вспомним, что геологические породы состоят из химических элементов: углерода, кислорода, кальция и так далее. Ряд элементов (например, уран) встречаются в более легкой и более тяжелой форме. Некоторые из последних неустойчивы и выплевывают небольшие кусочки самих себя, пока не достигнут более стабильной, легкой формы. Для каждой формы мы можем вычислить скорость плевания. Потом мы (под «мы» я имею в виду «другие представители моего биологического вида, которые умеют это делать намного лучше меня») берем кусок камня, измеряем относительные количества устойчивых и неустойчивых форм элементов и по ним высчитываем, как давно неустойчивые формы плюются, чтобы стать устойчивыми. Основываясь на этих расчетах, мы можем определить, когда сформировалась данная горная порода и сколько ей лет.

Для геолога слово «эон» (англ. «вечность») имеет значение несколько более конкретное, чем просто «очень-очень долго». Эоны  крупнейшие единицы, на которые делятся примерно 4 млрд лет земной истории. Эоны подразделяются на эры, а эры  на периоды. Из всех единиц геологического времени люди чаще всего слышат именно о периодах; среди них, например, юрский и меловой (а также упомянутые ранее пермский и девонский).

Для целей этой книги нам потребуется только один эон: тот, в котором мы с вами живем сейчас, эон «явной жизни», или по-гречески фанерозой, продолжительностью всего полмиллиарда лет. В него входят три эры: эра «старой жизни» (палеозой), «средней жизни» (мезозой) и «новой жизни» (кайнозой), каждая из которых делится на периоды. Ученые, одержимые страстью к точности, разделили периоды на эпохи и ярусы (века), но нам здесь они не понадобятся  разве только для того, чтобы увидеть, что в значительной степени этой точностью мы обязаны аммоноидам.

Аммоноиды выступают в роли идеальных меток геологического времени. Их необычайно стремительная эволюция выражалась в том, что новый вид возникал практически каждую геологическую «минуту». Изобилие ископаемых аммоноидов означает, что вы можете обнаружить один и тот же «отпечаток пальца» во многих породах в самых разных местах планеты. Существует лишь один прискорбный момент: мы так долго рассматривали аммоноиды исключительно в качестве каменных часов, что перестали видеть в них все остальное.

«Аммониты воспринимались скорее как окаменелости, чем ископаемые организмы: ученые рассуждали о том, как один вид порождал другой и как они распределялись по планете. Но что делали аммониты, когда были живы,  ответ на этот вопрос оставался предельно туманным»,  пишет Нил Монкс{21}, автор книги об аммоноидах (несмотря на название «Аммониты»{22}). Это происходит потому, что когда люди обсуждают аммоноиды, то, даже если эти люди  профессиональные палеонтологи, они чаще используют более знакомое и часто употребляемое слово «аммониты», хотя, как отмечает Монкс в предисловии к своей книге, «строго говоря, название "аммонит" используется для единственного подотряда Ammonitina в подклассе Ammonoidea»{23}. Надеюсь, меня простят за употребление более редкого и официального названия «аммоноиды», которое порождает красивую параллель с наутилоидами и колеоидами.

Хотя Монкс и работал какое-то время в области палеонтологии, начал он с увлечения аквариумистикой, и первой его университетской специальностью была зоология. Он привык думать о животных в своих аквариумах как о существах, которые живут, дышат, испражняются, и, когда он поступил на палеонтологический факультет, его слегка ошарашило, что в научных кругах к аммоноидам относятся главным образом как к весьма полезным камням.

Увлекшись вопросами биологии аммоноидов, Монкс нашел единомышленника, Филипа Палмера, куратора отдела ископаемых моллюсков в лондонском Музее естественной истории. В какой-то момент они решили изложить на бумаге свои многочасовые беседы, и в 2002 г. вышла в свет книга «Аммониты», в которой Монкс и Палмер заявили: эти камни когда-то были живыми. Вот где эти животные могли жить, как могли двигаться, вот что они могли есть.

Впрочем, Монкс прекрасно понимал ограниченность такого рода предположений. В статье 2016 г. под названием «Аммонитовые войны» (Ammonite Wars) он рассуждал, почему так трудно было разобраться в биологии окаменелых аммонитов: «Кости позвоночных тесно связаны с прилегающими к ним мускулами. Если посмотреть на скелет динозавра или мамонта, можно многое понять о строении животного, о том, как оно выглядело при жизни. А вот раковины аммонитов в этом отношении немы. По ним мало что можно выяснить о размере и форме мягких частей тела живого аммонита  на раковине видны лишь несколько неясных следов прикрепления мышц»{24}.

Однако недостаток информации о мягких частях тела ископаемых аммонитов с лихвой компенсируется изобилием данных об их рождении, росте и зрелости. В том, что касается развития организма в течение жизни, раковины аммоноидов могут многое рассказать. И в этом случае развитие оказывается одним из ключевых факторов  едва ли не единственным  для понимания их эволюции.

Новый символ эволюции

Мы многое знаем об эволюции. Мы знаем, что все живое на планете взаимосвязано и что родственные связи можно проследить по ДНК. Мы знаем, что естественный отбор приводит к тому, что каждый вид приспосабливается к своей экологической нише, а в результате массовых вымираний периодически опустошается множество ниш, давая выжившим видам новые возможности для адаптации. Мы знаем, что и эволюция, и вымирание могут происходить очень быстро  мы видели, как насекомые и бактерии развивают способность сопротивляться нашим попыткам их уничтожить, и видели, как это не удалось птицам додо и стеллеровым коровам.

Но нам предстоит еще многое изучить.

Одна из важнейших задач в исследовании эволюции  разобраться в том, что служит источниками новшеств. Откуда берутся новые формы, новые паттерны, новые привычки  в масштабах, необходимых для того, чтобы создать ошеломляющее разнообразие жизни вокруг нас. Естественный отбор, о котором мы узнали благодаря блестящему озарению Дарвина, можно сравнить с работой скульптора. Так откуда же этот скульптор берет глину?

На данный вопрос с некоторых пор отвечает новая область науки, известная сегодня как эво-дево: похоже на название инди-рок-группы, но на самом деле это просто сокращение от evolution and development («эволюция» и «развитие»). Корнями она глубоко уходит в генетику{25}.

Оказывается, что наша ДНК  не линейное пошаговое руководство по сборке. Она больше напоминает электрическую схему  сеть взаимодействующих соединений. Каждый организм в начале своей жизни представляет собой практически одно и то же: единственную клетку, готовую делиться и расти. И множество генов внутри такой клетки более или менее похожи у всего царства животных. Регуляторные механизмы более высокого уровня в каждой клетке определяют, какие шаги построения организма будут пропущены, какие выполнены, а также когда, в каком порядке и сколько раз они будут выполнены. Незначительные изменения в этих регуляторных механизмах могут приводить к возникновению радикальных новшеств: другое количество конечностей, другая форма тела, другой тип чешуи пресмыкающихся, по сути превратившейся в перья.

Сноски

1

Клемы  собирательное название промысловых закапывающихся двустворчатых моллюсков.  Прим. науч. ред.

2

Для группы аммоноидов часто используют название «аммониты», так как Ammonitina  единственный подотряд в подклассе Ammonoidea.  Прим. науч. ред.

Назад Дальше