Секреты успешных НИОКР - Виктор Юрьевич Николенко 6 стр.


Для повышения эффективности формирования системы многие компании используют процедуру коллективного экспертного выбора конструкторских решений будущих изделий. Этап выбора базовых проектных решений, например, в компании Airbus, может длиться от 3 месяцев до 1,5 лет. В этом процессе участвуют эксплуатационники, конструкторы, технологи, производственники, закупщики, риск-разделенные партнеры. Предпочтительно работы проводятся при личном общении участников на единой площадке. В ходе этапа определяют перечень позиций, по которым должны быть приняты общие заключения, обсуждение и утверждение базовых конструкторских решений. Детально расписан процесс принятия решений и их количество на данном этапе. Примерами критериев принятия оптимальных решений могут быть масса системы, прочность, новизна технологии, стоимость, варианты конструкции, унификация, и др. Согласованный перечень проектных решений далее является руководством к действиям разработчиков на этапах предварительного и детального проектирования системы. Составляют соглашения об используемых в программе инструментах, формате данных, требований, критериев, коммуникации и др. Набор этих результатов должен быть задокументирован и является опорным при дальнейшей разработке сложных систем. Так повышается качество разработки, потому что за облик конструкции отвечают совместно эксперты разных направлений. Нет места ошибкам, типа недавно озвученной каким-то самолетостроителем РФ, что проблемы при работе одной из систем нового изделия связаны с тем, что ее проектирование поручили молодому специалисту.


Основной целью детального проектирования системы является интеграция всех компонентов в единую систему. Технический проект уточняет, как будет выглядеть реальная система и ее компоненты (размеры, формы и взаимное расположение). Он включает формирование и документирование подсистем, узлов, частей основной системы, и вспомогательных элементов. Здесь принимаются решения о том, будут ли подсистемы и компоненты функционировать вручную или автоматически, будут ли компоненты электронными, механическими, или гидравлическими, и так далее. На чертежах и моделях должны быть показаны все детали, необходимые для последующего изготовления, сборки и обслуживания системы.

Ранее при создании систем собирали все части вместе, и затем проводили испытания системы. Часто оказывалось, что система, включающая множество отдельных частей и большой объем программного обеспечения, слишком сложна для успешного объединения всего и сразу. Постепенно была внедрена фаза между сборкой и испытаниями, которую сегодня называют системной интеграцией. Это процесс, при котором пошагово объединяют все компоненты и подсистемы в одну систему, и обеспечивают их работу и функционирование как единого целого. Интеграция определяет координацию усилий по сборке функционирующей системы.

Управление интеграцией объединяет все области знаний в программе и связывает план разработки в одно целое, координируя различные процессы и действия в рамках программы. В число ключевых элементов управления интеграцией входят назначение системы, время, стоимость, контроль качества, персонал, коммуникации, риски, материально-техническое снабжение.

Конечной целью интеграции является обеспечение функционирования системных элементов в соответствии с указанными требованиями, конфигурационной документацией, требованиями к интерфейсу, применимыми стандартами, последовательностью и процедурами интеграции. Должны быть разработаны проектные спецификации для всех компонентов и элементов нижнего уровня, включая аппаратное обеспечение, программное обеспечение, пользователей, сборки и пакеты. Далее определяют, закупают и интегрируют компоненты в окончательную конфигурацию системы. Выполняют критический анализ системы, выявляют возможные проблемы с конфигурацией в отношении требований к системе, и, при необходимости, вносят в нее изменения.

При интеграции сначала последовательно собирают части в небольшие компоненты. Затем интегрируют крупные подсборки для объединения всей системы. Проводят проверку работоспособности отдельных компонентов и подсистем, чтобы заставить элементы системы работать правильно. Сравнивают результаты испытаний с ожидаемыми. При отклонениях отслеживают источник несоответствия и вносят необходимые коррективы в реализацию элемента. Процесс повторяется до достижения заданных результатов для каждой из подсистем. При этом заметно уменьшается количество ошибок, которые остаются в системе (скрытые дефекты). Также подтверждается, что система завершена, и готова к валидации. Сборку системы на основании разработанной документации может выполнить группа независимых команд, каждая из которых будет отвечать за одну или несколько входящих частей.

В ходе интеграции подключают новый компонент к системе так, чтобы ее не повредить. Компонент будет проверяться индивидуально в изолированных средах. Сначала подтверждается, что он функционирует так, как предполагалось, а затем проверяют, что он не причиняет вреда окружающим модулям и не приводит к их нежелательному поведению. После такой проверки компонент можно интегрировать в состав системы. По сути, вводится безопасное пространство для отказа, позволяющее инженеру принимать решения с реальными последствиями в гораздо меньшем масштабе, чтобы учиться на собственном опыте.

В результате процесса должны быть получены: интегрированный продукт со всеми системными взаимодействиями, документация и руководства, включая модели, данные и отчеты системного анализа, подтверждающие обоснование готовности системы. Формируют отчеты по интеграции продуктов (для поддержки процесса управления техническими данными), чертежи сборки, результаты верификации, требования к эмулятору (где приложимо).

Важным вопросом интеграции является применение правила копирования, то есть использования готовых компонентов, модулей, подсистем, покупаемых на рынке. При любом применении заимствованные части изделия должны проверяться на качество и верифицироваться так же, как новое оборудование.

Процесс интеграции продукта применяется не только к аппаратным и программным системам, но также к сервис-ориентированным решениям, спецификациям, планам и концепциям.

На этапе синтеза продукта эффективно применяют интеграционную методологию параллельного инжиниринга (подробности в разделе 3.2.2). Так названа совместная работа различных специалистов, сотрудничающих одновременно в общей среде, реальной или виртуальной, для создания общего дизайна, достигая сокращения времени цикла разработки продукта за счет лучшей интеграции мероприятий и процессов.

Важнейшим инструментом в процессе развития параллельного инжиниринга стало освоение трехмерного электронного макета изделия (ЭМИ), используемого командами проекта 24 часа в сутки. Работа с ЭМИ существенно снижает время проектирования и затраты. Электронный цифровой макет изделия становится средоточием информации о продукте, определения можно найти в ГОСТ 2.0512.058.

Электронный макет в процессе разработки включает обычно три уровня.

Начальный макет ЭМИ-1 используется для предварительных компоновочных решений по продукту и включает: все внешние формы системы или секции, основные геометрические сведения о силовом наборе, важные интерфейсы, все системы координат, необходимые для позиционирования подсборок между собой, общие виды и внешние границы.

Данные решения проверяются на следующей стадии макета ЭМИ-2 (space allocation mock-up), макет распределения внутренних объемов продукта под компоненты и агрегаты, который развивает мастер-геометрию и служит для проработки использования допустимого пространства внутри изделия при его заполнении конструктивными элементами, определения расположения подсистем и частей оборудования, проверки их взаимной увязки. На базе 3D-моделей макета второго этапа ЭМИ-2 после «замораживания» всех проектных решений конструкции выпускается рабочая документация (РКД), которая передается намеченным производителям для согласования и доработки технологий производства.

Разработанная и скорректированная рабочая документация служит основой для финальной модели (макета) изделия ЭМИ-3 (справочная геометрия, сертификация). Этот макет строится в завершающей стадии конструирования на основании производственных чертежей и служит источником для стадий производства, эксплуатации, при разработке модификаций. Также ЭМИ-3 включает базу сертификационных расчетов на прочность, сборник требований по установке систем и оборудования.

В результате в ЭМИ включены технические данные системы, трехмерные (3-D) модели, документы и обеспечивающие процессы, необходимые для использования при дальнейших этапах работ. Сюда входят трехмерная модель системы, набор и система управления техническими документами проекта, система управления составом изделия, система управления жизненным циклом изделия, технологические данные, содержащие необходимые указания для производства, результаты расчетов, производственные данные для проектирования и изготовления оснастки, технологические процессы, библиотеки операций и переходов.

Требования к точности цифровых моделей изложены в ГОСТ Р 57700.232020 «Компьютерные модели и моделирование. Валидация. Общие положения». На этом этапе формируется набор цифровых двойников системы.

Цифровым двойником (ЦД) изделия называют систему, состоящую из цифровой модели изделия и двусторонних информационных связей с изделием и его составными частями, согласно ГОСТ Р 57700.372021 «Компьютерные модели и моделирование. Цифровые двойники изделий. Общие положения». В основе цифрового двойника лежит модель изделия, которая, в свою очередь, является «системой математических и компьютерных моделей, а также электронных документов изделия, описывающей структуру, функциональность и поведение вновь разрабатываемого или эксплуатируемого изделия на различных стадиях жизненного цикла». Она приближенно описывает структуру, функциональность и поведение вновь разрабатываемого или эксплуатируемого изделия на различных стадиях жизненного цикла. Эта виртуальная модель физической системы постоянно обновляется по следам изменений своего реального прототипа. Разрешением модели называют степень детализации и точности, достигаемую при представлении реального мира в статической или динамической (изменяемой во времени) модели.

Верификацией модели называют процесс подтверждения того, что получаемые от модели данные точно представляют требования разработчика. Валидацией модели называют процесс определения степени адекватности, с которой данные модели являются представлением объектов реального мира в части их использования. Иными словами, достаточно ли точно математическая модель описывает поведение реальной системы в отношении принимаемого решения. Различают валидацию требований и валидацию продукта. Целью валидации требований является контроль их правильности и полноты для достижения безопасности и удовлетворения потребностей потребителя в рамках заданных ограничений (например, стоимости, графика). Валидация продукта служит для установления соответствия продукта потребностям клиента.

В стандарте ГОСТ Р 583012018 «Управление данными об изделии. Электронный макет изделия. Общие требования» предложена классификация моделей, привязанных к основным фазам жизненного цикла. Функциональный макет ЭМИ-Ф включает взаимосвязанную совокупность данных, описывающих устройство, состав, характеристики, принципы работы и возможные нарушения работоспособного или исправного состояния изделия. Конструкторский макет ЭМИ-К содержит взаимосвязанную совокупность данных, описывающих конструкцию и требования к изготовлению (сборке) изделия. Технологический макет ЭМИ-Т концентрирует взаимосвязанную совокупность данных, описывающих технологию изготовления (сборки) изделия и используемых для планирования, оценки и организации процесса изготовления изделия. Эксплуатационный макет ЭМИ-Э включает взаимосвязанную совокупность данных, описывающих эксплуатационные свойства изделия и требования к процессу его технической эксплуатации.

Вышеперечисленный объем работ на регулярно актуализируемом ЭМИ и его компонентах, отработка электронных сборок, включающих до 50000 деталей, позволяют существенно повысить качество выдаваемой конструкторами документации, в 610 раз снизить стоимость затрат на корректировки конструкторских решений в производстве.

На этапе проектирования выполняется выпуск рабочей конструкторской документации в электронном виде. Системные спецификации проекта преобразуются в планы, эскизы, чертежи, блок-схемы или модели. Здесь система разбивается на уровни подсистем, компонентов и частей. Конкретизируются компоненты системы, размеры, взаимосвязи и общая конфигурация. Варианты конструкции элементов на каждом уровне сложности проверяются на совместимость друг с другом и с элементами на более высоких уровнях. Проводится контроль соответствия спецификациям и требованиям к стоимости системы, графику и характеристикам.


При этом уточняются следующие наборы данных.

1. Базовая конфигурация (см. раздел 1.5) системы на уровне элементов и компонентов. Она включает утвержденную документацию по конфигурации системы, списки компонентов и частей, их технические спецификации, инженерные чертежи, модели прототипов системы и интегрированные проектные данные.

2. Технические требования к производственному процессу или процессу обслуживания, для любых элементов или компонентов системы. Включают необходимые производственные процессы, такие как сварка, формование, резка, гибка, или процессы обслуживания и логистики. Также определяют транспортировку, упаковку, инфраструктуру баз данных проекта.

3. Материальная спецификация, которая включает технические требования, относящиеся к материалам элементов и компонентов системы. В нее входят сырье, вспомогательные материалы (краски, клеи и композиты), и любые коммерчески доступные материалы от поставщиков (кабели, трубы, элементы крепежа, и так далее) для подсистем.


При детальном проектировании для проверки конструкции широко используют моделирование на основе прототипов. Прототипом называют оперативно смоделированное представление системы, которое позволяет дизайнерам и пользователям его визуализировать, осмыслять, трогать и чувствовать для эффективной проверки дизайна. Прототипы бывают разных форм и уровней детализации, от концептуальных карточек и нарисованных вручную блок-схем до сложных версий системного интерфейса или макетов оборудования. Чем ближе прототип к реальной системе, тем выше его точность. Сюда же относятся обучающие устройства, копии компонентов реальной системы, например, тренажеры для обучения пользователей.

Назад Дальше