6. Полициклические ароматические углеводороды образуются в результате природных и техногенных процессов.
7. Радионуклиды. Причиной загрязнения может быть небрежное обращение с природными и искусственными источниками радиации.
Определен перечень приоритетных загрязнителей, подлежащих контролю в различных группах продовольственного сырья и пищевых продуктов (табл. 2.1.).
2.1.8. Меры токсичности чужеродных химических веществ
На основе токсических критериев международными организациями ВОЗ, ФАО и др., а также органами здравоохранения отдельных государств приняты базисные (основные) показатели гигиенические нормативы. В большинстве случаев реализация того или иного эффекта зависит от концентрации. При повышении оптимальной физиологической концентрации элемента в организме может наступить интоксикация, а дефицит многих элементов в пище и воде может привести к достаточно тяжелым и трудно распознаваемым явлениям недостаточности.
Предельно-допустимая концентрация (далее ПДК) предельно-допустимые количества чужеродных веществ в атмосфере, воде, продуктах питания с точки зрения безопасности их для здоровья человека. ПДК в продуктах питания установленное законом предельно-допустимое с точки зрения здоровья человека количество вредного чужеродного вещества. ПДК это такие концентрации веществ, которые при ежедневном воздействии в течение сколь угодно длительного времени не могут вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в жизни настоящего и последующего поколений.
Допустимая суточная доза (далее ДСД) ежедневное поступление вещества, которое не оказывает негативного влияния на здоровье человека в течение всей жизни.
Допустимое суточное потребление (далее ДСП) величина, рассчитываемая как произведение ДСД на среднюю величину массы тела (60 кг).
Количественная характеристика токсичности веществ достаточно сложна и требует многостороннего подхода. Судить о ней приходится по результатам воздействия веществ на живой организм, для которого характерна индивидуальная реакция, индивидуальная вариабельность, поскольку в группе испытуемых животных всегда присутствуют более или менее восприимчивые к действию изучаемого токсина индивидуумы.
Существуют две основные характеристики токсичности: ЛД 50 и ЛД 100.
Летальная доза (далее ЛД), т.е. доза вызывающая при однократном введении гибель 50% или 100% экспериментальных животных. Дозу обычно определяют в размерности концентрации. Токсичными считают те вещества, для которых ЛД мала. Принята следующая классификация веществ по признаку острой токсичности (ЛД 50 для крысы при пероральном введении, мг/кг):
Чрезвычайно токсичные ..менее 5
Высокотоксичные ..5 50
Умеренно токсичные .50 500
Малотоксичные .500 5000
Практически нетоксичные . 5000 15000
Практически безвредные ..более 15000
Величина t
0,5
2.1.9. Показатели качества и безопасности пищевой продукции
Пищевая продукция, находящаяся в обращении на таможенной территории Таможенного союза в течение установленного срока годности при использовании по назначению должна быть безопасной.
Показатели безопасности пищевой продукции установлены в Приложениях к ТР ТС 1, 2, 3, 4, 5 и 6. Показатели безопасности (кроме микробиологических) для пищевой продукции смешанного состава определяются по вкладу отдельных компонентов с учетом массовых долей и показателей безопасности для данных компонентов, установленных ТР ТС, если иное не установлено Приложениями к ТР ТС 1, 2, 3, 4, 6 и (или) техническими регламентами Таможенного союза на отдельные виды пищевой продукции.
Безопасность пищевой продукции оценивается по гигиеническим нормативам, которые включают биологические объекты, потенциально опасные химические соединения, радионуклиды и вредные растительные примеси. Присутствие их в пищевых продуктах не должно превышать допустимых уровней содержания в заданной массе (объеме) исследуемой продукции. Указанные показатели безопасности установлены для 11 групп продуктов:
1. Мясо и мясопродукты, мясо птицы, яйца и продукты их переработки.
2. Молоко и молочные продукты.
3. Рыба, нерыбные продукты промысла и продукты, вырабатываемые из них.
4. Зерно (семена), мукомольно-крупяные и хлебобулочные изделия.
5. Сахар и кондитерские изделия.
6. Плодоовощная продукция.
7. Масличное сырье и жировые продукты.
8. Напитки.
9. Другие продукты.
10. Биологически активные добавки к пище.
11. Продукты детского питания.
Безопасность пищевых продуктов, как животного, так и растительного происхождения определяется, прежде всего, по микробиологическим показателям.
Во всех видах продовольственного сырья и пищевых продуктов нормируются токсичные элементы: свинец, мышьяк, кадмий, ртуть. Дополнительно к перечисленным элементам в консервированных продуктах (консервы из мяса мясорастительные; консервы из субпродуктов; консервы птичьи; консервы молочные; консервы и пресервы рыбные; консервы из печени рыб; консервы овощные, фруктовые, ягодные; консервы грибные; соки, нектары, напитки, концентраты овощные, фруктовые, ягодные в сборной жестяной или хромированной таре) нормируется олово и хром. Информация об анализируемых вредных и токсичных веществах приведена в таблице 2.2.
Во всех видах продовольственного сырья и пищевых продуктов нормируются так называемые «глобальные» пестициды: гексахлорциклогексан, ДДТ и его метаболиты; в рыбе и продуктах ее переработки дополнительно нормируются 2,4-Д-кислота, ее соли и эфиры; в зерне и продуктах его переработки гексахлорциклогексан, ДДТ и его метаболиты, гексахлорбензол, ртутьорганические пестициды, 2,4-Д-кислота, ее соли и эфиры.
Радиационная безопасность продуктов животного и растительного происхождения определяется их соответствием допустимым уровням удельной активности радионуклидов цезия-137 и стронция-90.
В продуктах животного происхождения регламентируется содержание ветеринарных препаратов: стимуляторов роста животных антибиотиков (в том числе гормональных препаратов), лекарственных средств (в том числе антибиотиков), применяемых в животноводстве для целей откорма, лечения и профилактики заболеваний скота и птицы. При этом контроль за ветеринарными препаратами основывается на информации, представляемой изготовителем.
«МР 2.3.7.016820 Оценка качества пищевой продукции и оценка доступа населения к отечественной пищевой продукции, способствующей устранению дефицита макро- и микронутриентов. Методические рекомендации» в приложении 2 устанавливает Перечень рекомендуемых методов исследований для определения показателей качества пищевой продукции.
Перечень методов исследований для определения показателей безопасности пищевой продукции приведен в «Перечне стандартов, содержащих правила и методы исследований (испытаний) и измерений, в том числе правила отбора образцов, необходимые для применения и исполнения требований технического регламента «О безопасности пищевой продукции» (ТР ТС 021/2011).
Таблица 2.2
Вредные и токсичные вещества, анализируемые в пищевой продукции
2.2. Общие сведения о методах определения качества и безопасности пищевых продуктов
2.2.1. Сенсорные методы
Полноценность, пищевые и биологические свойства продуктов питания сохраняются при условии их высокого качества. Для определения доброкачественности применяются разнообразные методы: органолептические, химические, физические, микробиологические, биологические, радиометрические и др. Стандарты предусматривают те или иные методы исследования пищевых продуктов. Однако довольно сложно установить уровень качества, если его показатель не может быть измерен инструментально. Это особенно характерно для оценки качества по органолептическим показателям.
Качество продукта органолептическим методом определяется на основании ощущений человека. С помощью органов чувств (зрения, обоняния, осязания) проводится органолептический или сенсорный (лат. sensus ощущение, чувство) анализ. Особенностью сенсорного анализа является то, что в роли прибора для измерения выступает сам человек, поэтому такая оценка по своей природе субъективна. Тем не менее, с помощью сенсорных методов оценки можно сделать достаточно точное заключение о качестве продукта без привлечения дорогостоящих приборов, оборудования и реактивов.
Объективность сенсорных исследований можно существенно повысить за счет обучения специалистов методам дегустационного исследования с использованием количественной оценки органолептических показателей по балльным шкалам при создании соответствующих условий для работ дегустаторов, обеспечении специалистов методическими материалами и др.
Сенсорные методы исследования позволяют довольно точно и с незначительными затратами средств и времени выявить имеющиеся недостатки пищевой продукции. Основываясь на знаниях сенсорики, можно получить необходимую информацию о качестве продуктов питания при разработке новых и изменении существующих рецептур, синтезе аналогов пищи и создании ароматизаторов, установить предел приемлемости продукта. Даже после полного перехода на инструментальные методы оценки качества органолептика остается посредником между прибором и чувственным восприятием свойств продукта потребителем.
В последнее время появились высокочувствительные приборы для изучения органолептических свойств продукции. Интеллектуальные сенсорные системы («электронный нос» и «электронный язык») созданы на основе неселективных сенсоров с последующей обработкой результатов измерений методом распознавания образов с применением искусственных нейронных сетей.
«Электронный язык» представляет собой аналитическое устройство для качественного и количественного анализа многокомпонентных растворов различной природы, состоящее из массива неспецифических химических сенсоров, обладающих перекрестной чувствительностью. Это означает, что каждый из них «запоминает» свой отклик на анализируемый объект, а все вместе они создают достаточно представительный его образ. Сложная программа, «обучившись» предварительно на эталонных объектах, позволяет сравнить результаты анализа с эталоном и выдать результат.
«Электронным носом» называют мультисенсорную систему распознавания компонентов газовых смесей, работающие на различных физических принципах (проводимость, приращение массы, измерение емкостных зарядов, флуоресценция и др.). Принцип работы прибора заключается в измерении электропроводности сенсоров при их взаимодействии с парами летучих веществ. В результате адсорбции молекул исследуемого вещества электропроводность чувствительных материалов сенсоров увеличивается. Величина отклика каждого сенсора из набора на разные газы должна быть индивидуальна. Математическая обработка данных сенсорного массива позволяет сформировать уникальный химический образ анализируемого объекта.
2.2.2. Качественный анализ
Качественный и количественный анализ являются предметом аналитической химии. Определение состава веществ включает выявление природы компонентов, из которых состоит исследуемое вещество, и установление количественных соотношений этих компонентов.
Сначала устанавливают качественный состав исследуемого объекта, т.е. решают вопрос, из чего он состоит, а затем приступают к определению количественного состава, т.е. узнают, в каких количественных соотношениях обнаруженные составные части находятся в объекте исследования.
Качественный анализ вещества можно проводить химическими, физическими, физико-химическими методами. Химические методы анализа основаны на применении характерных химических реакций для установления состава анализируемого вещества. Химический анализ вещества проводят двумя способами: «сухим путем» или «мокрым путем».
Анализ сухим путем это химические реакции, происходящие с веществами при накаливании, сплавлении и окрашивании пламени.
Анализ мокрым способом это химические реакции, протекающие в растворах электролитов. Анализируемое вещество предварительно растворяют в воде или других растворителях. В зависимости от массы или объема взятого для анализа вещества, от применяемой техники различают макро-, полумикро- и микрометоды.
Макрометод. Для проведения анализа берут 12 мл раствора, содержащего не менее 0,1 г вещества, и добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирке, осадок отделяют фильтрованием. Осадок на фильтре промывают от примесей.
Полумикрометод. Для анализа берут в 1020 раз меньше вещества (до 0,01 г). Так как в этом методе работают с малыми количествами вещества, то пользуются микропробирками, часовыми или предметными стеклами. Для отделения осадка от раствора применяют центрифугирование.
Микрометод. При выполнении анализа данным методом берут одну-две капли раствора, а сухого вещества в пределах 0,001 г. Характерные реакции проводят на часовом стекле или фарфоровой пластинке.
При проведении анализа пользуются следующими операциями: нагревание и выпаривание, осаждение, центрифугирование, проверка полноты осаждения, отделение раствора центрифуга от осадка, промывание и растворение осадка.
2.2.3. Количественный анализ
Количественный анализ совокупность химических, физико-химических и физических методов определения количественного соотношения компонентов, входящих в состав анализируемого вещества.
Для определения количественного состава вещества или продукта используются реакции нейтрализации, осаждения, окислениявосстановления, комплексообразования. Количество вещества можно определить по его массе или объему раствора, затраченного на взаимодействие с ним, а также по показателю преломления раствора, его электрической проводимости или интенсивности окраски и т. п.
Количественный анализ позволяет установить:
количественные соотношения составных частей неизвестного индивидуального соединения, т.е. установить его формулу;
содержание или концентрацию определяемого вещества в исследуемом образце;
содержание всех или некоторых главных компонентов анализируемой смеси;
содержание определенных форм того или иного элемента;
содержание не главных компонентов смеси;
содержание микропримесей в особо чистых веществах;
содержание определенных радикалов, активных атомов, функциональных групп вещества, состав отдельных фаз смеси.
2.3. Методы количественного анализа
2.3.1. Классификация методов количественного анализа
Методами количественного анализа проверяют правильность технологических процессов, решают многие вопросы исследовательского и прикладного характера: оценивают содержание ценных веществ в биологических объектах, присутствие токсических веществ в продуктах питания, воде и т. д.
Методы количественного анализа являются измерительными методами, так как они базируются на информации, получаемой с использованием средств измерений и контроля. В основе всех методов анализа лежит измерение либо химического, либо физического свойства вещества, называемого аналитическим сигналом, зависящего от природы вещества и его содержания в пробе.