Дьявольские простые числа, или Периодическая система натурального ряда - Стор Анатолий


Анатолий Стор

Дьявольские простые числа, или Периодическая система натурального ряда

Как известно все натуральные целые числа, кроме единицы имеют по меньшей мере два делителя: единицу и само себя. Те из них, которые не имеют, никаких других делителей называются «простыми». Те числа, которые имеют еще и другие делители называются «составными». Единицу принято, не относить ни к простым ни к составным числам.

То, что простых чисел имеется бесконечное множество, было установлено еще в древности (Евклид 3 век до н.э.). Первой важной задачей теории числе, как определить является ли произвольное число простым или нет.

Первое что может прийти в голову,  это делить данное число на все числа меньшее его. Но надо признать , что этот способ мало удовлетворителен. Некоторые энтузиасты вычислители за последние 200 лет составили и издали много таблиц простых чисел. Одна из обширных таблиц является таблица Д. Х.Леметра, содержащая все простые числа до 10 000 000. Появились уже таблицы превосходящие это число.

В течение нескольких столетий шла погоня за простыми числами, и многие математики боролись за честь стать открывателями самого большого из всех известных простых чисел.

Основное направление решения задал французский монах Мерсенна (15881648г.г.), который начал вычислять простые числа по формуле М

р

р

М

2

= 2

2

1 = 3 простое

М

3

= 2

3

1 = 5 простое

М

5

= 2

5

1 = 31 простое

М

7

= 2

7

1 = 127 простое

М

11

= 2

11

1 = 2047 = 23*89 составное

Самостоятельно вычислил простое число М

31

31

Пьер Ферма

p

2^p

0

2^0

F

1

= 2

2^1

+ 1 = 5

F

2

= 2

2^2

+ 1 =17

F

3

= 2

2^3

+ 1 = 257

F

4

= 2

2^4

+ 1=65537

Однако все тот же Леонардо Эйлер показал, что число F

5

Общее решение задачи простых чисел показал древнегреческий математик из Александрии Эратосфен (около 200г. до н.э.) с помощью следующей схемы, которая называется «Решетом Эратосфена».

Его схема состоит в следующем: имеется последовательность всех целых чисел:1,( 2), (3), 4, (5), 6, (7), 8, 9, 10,(11), 12, (13), 14, 15, 16, (17), 18, (19), 20, 21 подчеркивается каждое второе число начиная с 2 (кроме самого числа 2). После этой операции первым подчеркнутым числом будет 3 оно простое взятое в скобки, как и другие простые числа также.

Оставив число 3 неподчеркнутым, будем подчеркивать каждое третье число после него, т.е. числа 6, 9, 12, 15, мы их подчеркиваем дважды, а которые пунктиром означает тройное подчеркивание, а некоторые из них уже были подчеркнуты поскольку они являются четными. На следующем шаге первым неподчеркнутым числом окажется число 5; оно простое. Оставив число 5 неподчеркнутым, но подчеркнем каждое пятое число после него, т.е. числа 10,15,20,25,; как и раньше часть из них уже оказалась подчеркнутой. Теперь наименьшим неподчеркнутым числом окажется число 7, тоже простое. Повторяя этот процесс, мы в конце концов получим последовательность неподчеркнутых чисел, все они (кроме числа 1) являются простыми. С помощью компьютеров получены простые числа до 100 000 000.