Таблица 5.1. Модельные нагрузки на ОДА гимнаста при вращениях на опоре.
Однако, приведенные величины перегрузок легко преодолеваются спортсменами при верной технике упражнений и достаточной физической подготовленности.
Суммарное действие нормальных сил, отраженное в максимальных значениях нагрузок (табл. 5.1), может характеризовать физическую напряженность этих движений, но не дает полной динамической картины взаимодействия гимнаста с опорой, сопровождающего исполнение опорных вращений типа махов и оборотов. Между тем, техника этих упражнений существенно зависит от пофазных изменений нормального (т.е. направленного по радиусу) давления на опору.
Напомним, что это давление обязано двум силовым компонентам (рис. 5.6.): силе тяжести (а), прижимающей тело к опоре в верхней половине условного оборота и оттягивающей его от нее во второй, висовой половине движения. Второй компонент центробежная сила инерции, всегда оттягивающая тело от опоры, но значительно зависящая от скорости движения тела (б).
Рис. 5.6. Суммарное давление на опору при исполнении движений типа больших оборотов на перекладине.
Наиболее интересна и практически важна суммарная картина действия двух этих сил (в). Выделяются две неравные зоны такого движения.
В верхней из них, меньшей по охвату, преобладает сжимающее действие силы тяжести, требующее от исполнителя активного контроля осанки и «оттяжки» от опоры. В другой зоне, преобладающей, решающую роль играет оттягивающее действие. По ходу оборота активность этого оттягивающего действия в широких пределах изменяется от нуля до максимальных значений (см. табл. 5.1).
Эти изменения характерным образом отражаются в деформации опорных частей снаряда. Меняющееся по величине и направленности давление на опору, показанное на рис. 5.7, а, деформирует гриф снаряда, центр которого описывает в пространстве фигуру, носящую название «улитка Паскаля» или «кардиоида» (т.е. «подобная сердцу», б).
Рис. 5.7. Деформация опоры при исполнении оборотовых движений.
Практически важную и интересную особенность пофазных изменений давления на опору составляют пограничные зоны между фазами сжатия и оттяжки, когда какое бы то ни было давление на опору и связанные с этим деформации тела практически исчезают, благодаря чему становятся наиболее доступными различные перегруппировки перехваты, повороты и т. п. В динамическом смысле эти пограничные зоны подобны «невесомости».
Другое, очень важное следствие изменений давления на опору связано с технической осанкой работы на снарядах типа перекладины или брусьев р. в. Современная техника работы на снарядах требует постоянной активной оттяжки от опоры с посильным для гимнаста удлинением тела. На первый взгляд кажется, что для выполнения этого требования достаточно контроля осанки в зоне сжатия (см. рис. 5.7, а), тогда как в зоне оттяжки все должно получаться «само собой», и нужно лишь расслабленно провиснуть, подчиняясь «даровым» вешним силам.
Действительно, в применении к зонам, где оттягивающее воздействие на тело гимнаста составляет сотни килограмм, это достаточно верно, но в зонах ослабленных внешних воздействий этого совершенно недостаточно. В особенности это относится к зонам движения около стойки на руках и прилегающим к ним зонам «невесомости».
5.1.4. Активное взаимодействие с опорой
Выполняя маховые движения на опоре, гимнаст активно взаимодействует с ней. Это действия обычно играют как бы регулирующую роль, являясь средством использования описанных выше внешних, «даровых» факторов движения. Но в отдельных случаях, когда возможности непосредственного активного взаимодействия с опорой оказываются более значительными, они используются как механизм непосредственного (за счет мышечных усилий) энергонасыщения маховых движений на опоре.
Характерный пример маховые движения в упоре на брусьях (рис. 5.8).
Рис. 5.8. Силовое взаимодействие с опорой при маховых движениях.
Попеременно действуя на махах разного направления мышцами плечевого пояса, гимнаст может существенно изменять скорость и амплитуду размахиваний. Вместе с тем, эти действия тесно связаны с изменениями момента силы тяжести P
r
5.1.5. Действие диссипативных сил
Действие диссипативных сил (сил, рассеивающих энергию) играет внешне малозаметную, но в действительности, весьма существенную роль при исполнении упражнений типа махов и оборотов на опоре. Если силой сопротивления воздуха в данном случае можно пренебречь ввиду невысокой скорости движения тела23, то трение опорных звеньев гимнаста о снаряд рассеивает существенную часть общей энергии тела.
Рис. 5.9. Потери энергии на трение.
Так, если бы гимнаст попытался сделать полный большой оборот на перекладине, действуя все время со строго неизменной позой (т.е., фактически, не работая, рис. 5.9), он не дошел бы до конечного положения стойки на руках на угол, достигающий (в зависимости от силы хвата, коэффициента трения на грифе и др.) величины порядка 60
о
5.2. ОСНОВЫ ТЕХНИКИ ВРАЩЕНИЙ НА ОПОРЕ
Физические закономерности, образующие механизм вращательных движений типа махов и оборотов на практике, могут реализовываться посредством весьма разнообразной техники, опирающейся на ряд ключевых приемов. Рассмотрим ряд моментов на примере больших оборотов на перекладине.
5.2.1. Техника спадов
Техника спадов в движениях типа махов-оборотов предполагает решение трех типовых задач: 1) управление энергетикой спада, подготовка активных действий маха/оборота; 2) темпоритмическая организация движения.
Решение первой задачи практически целиком вытекает из физических закономерностей управления движением, в первую очередь, связанных с изменением момента силы тяжести, действующего на тело гимнаста при спаде.
Сравним характерные случаи изменения энергетики при спадах.
При максимальной «оттяжке» в избранном рабочем положении движение в поле тяготения дает к окончанию спада максимальную скорость и кинетическую энергию тела в целом. Любое отклонение от этой схемы приводит, по чисто физическим причинам, к более или менее значительному снижению энергетики спада. Этим, в частности, объясняются проблемы с разучиванием большого оборота на «старых» брусьях разной высоты, имевших сильно сведенные жерди (рис.5.10).
Рис. 5.10. Спад на узких брусьях р.в.
Нарочитые формы таких «нарушений» используются для гашения силы маха, если он в данной ситуации избыточен. Парадоксальной особенностью спадов является то, что движение, выполняемое на полной «оттяжке», медленнее развивается (начальные фазы длительнее во времени), но в итоге оказывается наиболее энергонасыщенным.
В то же время спады с промежуточным приближением тела к оси вращения в целом быстротечны и производят впечатление активного движения, хотя в действительности, как уже отмечалось, сопровождаются потерями кинетической энергии, и у нижней вертикали дают скорость движения меньшую, чем при спаде с полной «оттяжкой». Иногда это вводит тренеров в заблуждение.
Вторая типовая задача спада связана с потребностью получения наиболее благоприятного режима деятельности мышц, приближающих массы тела к опоре в решающей фазе движения. Это означает, прежде всего, необходимость предварительного оптимального (по величине, скорости) натяжения мышц, занятых в последующей фазе движения.
Классический пример такой подготовки мышц во время махового спада представлен на рис. 5.11, а: прежде чем сделать «бросок» ногами вперед, гимнаст выполняет «замах», позволяющий быстро натянуть мышцы вентральной группы, сгибателей. Аналогичным образом строится движение на махе в висе противоположного направления, с подготовительным сгибанием тела и натяжением мышц-разгибателей (б)
Примечания
1
Трамплины такого типа давно используются в прыжках в воду.
2
Строго говоря, в таких движениях тело вращается сразу вокруг всех трех центральных осей тела.
3
Термин из «концепции поэтапного формирования умственных действий» П. Я. Гальперина, адаптированной для спорта (работы М. М. Богена) и конкретно для гимнастики (работы Ю. К. Гавердовского). Ключевое понятие данной концепции «ориентировочная основа действий» (см.).
4
См. главу 11.
5
Исследование Ю. К. Гавердовского, В. П. Спиридонова.
6
Цирковые гимнасты идут еще дальше, выполняя трюки.
7
Ср., например, это движение с действиями т.н. «курбета», т.е. отталкивания, дающего вращение тела в направлении «броска» ногами.
8
Известный исторический факт: в свое время японские, корейские гимнасты долгое время имели проблемы в исполнении махов на коне, пока, наконец, не освоили иную технику, основанную на широкой работе «от плеча» при более выпрямленном теле.
9
Характерная аналогия развитие сложности и трудности акробатических упражнений на дорожке благодаря акробатам-прыгунам, которые специализируются в этом и только этом виде движений.
10
Например, при соскоке или прыжке сальто выпрямившись с вылетом на одну и ту же высоту (измеряемую по траектории ОЦМ) стопы рослого гимнаста, проходящего положение вниз головой, будут располагаться выше, чем у малорослого гимнаста.
11
В механике понятия «напряжение» и «сила» различаются. В данном контексте «силу» следует понимать, как меру общего действия мышцы в точках ее прикрепления на костях, тогда как «напряжение» есть отношение данной силы к физиологическому поперечнику мышцы. Эту разницу легко понять из следующего сопоставления: тонкую резинку можно легко напрячь небольшим усилием (сила маленькая, а напряжение большое), но такая же или даже бо́льшая сила, приложенная к толстому резиновому жгуту, вызовет лишь незначительное напряжение. Однако, в рамках рассмотрения связи «длина-напряжение» смысл понятий «сила» и «напряжение», в сущности, не различается.
12
Пример, предложенный В. Б. Коренбергом.
13
От греческого «балло» «бросаю».
14
Заметим, что при наиболее общем толковании понятия «уступающая» («полиметрическая») имеется в виду любая работа с натяжением мышцы, но в нашем случае это конкретно натяжение с одновременным подрасслаблением.
15
Напомним об известном эксперименте с т. н. «ишемической деафферентацией», при которой на бедро испытуемого накладывается резиновый жгут, лишающий конечность нормального кровообращения и, соответственно этому, должной чувствительности, а значит и условий для обратной афферентации. После этого легко убедиться, что никакое координируемое движение, например, стопой, не удается. Простейшая бытовая аналогия этому опыту «отсиженная» нога.
16
При наиболее активных действиях на опоре (отталкивания ногами с разбега сила воздействия на опору может на порядок превосходить вес тела гимнаста.
17
Одним из приемов обучения акробатическому сальто с места является его исполнение с легкими гантелями в руках. Это помогает спортсмену не только лучше понять важность махового движения руками, но и, как правило, заметно улучшает качество прыжка.
18
Не следует путать вращение с перемещением.
19
Для того, чтобы веко мигнуло, тоже нужно около одной десятой секунды.
20
Показательно также сравнение нарастающих по амплитуде махов с прыжками на батуте, высота которых также может увеличиваться при повторениях благодаря параметрическому резонансу.
21
По имени французского физика Гаспара Кориолиса (17921843). Выделяются две силы Кориолиса: т.н. «поворотная» сила и Кориолисова сила инерции, соотношение которых, условно говоря, такое же, как в случае центростремительной силы и центробежной силы инерции.
22
На самом деле, разумеется, такая техника отличается самой высокой мощностью действий.
23
Максимальная скорость движения тела гимнаста при исполнении упражнений на снарядах обычно не превышает величин порядка 89 м/с, к тому же фазы движения с такой скоростью очень непродолжительны. Между тем, существенные механические эффекты, связанные с сопротивлением воздушной среды, начинают сказываться только при скоростях порядка 50 м/с.