Интеллект-стек 2023 - Левенчук Анатолий 10 стр.


В принципе, огромное число проблем можно решать просто методом перебора разных вариантов решения (оставим вопрос о качестве воображения, чтобы предлагать достаточное число и разнообразие вариантов). Этот метод перебора называется методом проб и ошибок. Это основной метод работы многих и многих людей, tinkering/возня как в «он возится с автомобилем», это подчёркивается в книге Нассима Талеба «Антихрупкость». Но возня/«метод проб и ошибок» срабатывает увы, за огромное время и с потреблением огромных материальных ресурсов. Ещё ведь придётся найти то, что нужно будет перебирать, заранее ведь это тоже неизвестно  и перебирать приходится по огромным цепочкам создания. Вы бы догадались, что антибиотики помогают против бактерий в те времена, когда само понятие бактерии было ещё неизвестным? Проблема поиска антибиотиков не могла быть даже поставлена! Догадались бы, что надо использовать радиотриод в качестве логического элемента в вычислительной машине времён Бэббиджа, чтобы получить электронно-вычислительную машину, а не механо-вычислительную или пневмо-вычислительную? Время «возни» можно резко сократить, если возиться с какими-то уже известными из культуры предметами (например, «возиться с микропроцессором», а не возиться с очищенным кремнием в надежде, что в итоге этой возни появится какой-то компьютер, или возиться с разными сортами стали, в надежде, что когда-то из этой возни появятся огромные стальные ракеты Starship и Super Heavy. Нет, «с чем возиться» в методе проб и ошибок тоже зависит от уже накопленного человечеством знания.

Многие сегодняшние проблемы не могут быть решены сегодняшними плохо сконструированными (а эволюция ведёт к отнюдь не оптимальным «врождённым» решениям по части интеллекта73!) и плохо обученными (образование в мире отнюдь не идеально) людьми и машинами. Так что нужно усиливать интеллект, чтобы продолжать эволюцию (как техно-эволюцию, так и биологическую) и исправлять замеченные ошибки.

Представьте, например, что мы ещё не знаем, что такое «свет», а ведь первые микроорганизмы этого не знали! Или не знаем, что такое спин74 (который используется в спинтронике75), про который догадались только в 1924 году, меньше ста лет назад. Если мы мало знаем о структуре мира, то требуется огромное время интенсивных выходящих в мир для проведения экспериментов рассуждений, чтобы узнать о каких-то проблемах, а затем их решить. И ещё надо узнать о правилах рассуждений, которые ведут к рассуждениям без ошибок, логика у человечества тоже прошла долгий путь развития.

Если мы хотя бы частично что-то знаем о структуре мира (всегда частично, всегда мало, даже через десять тысяч лет это будет «частично» и «мало», развитие бесконечно!), это бы в десятки, тысячи, миллионы раз уменьшило количество вычислений/мышления интеллекта по выработке мастерства в решении связанного с этой особенностью структуры мира класса задач.

Скажем, какую-то проблему мы можем решить человеческим мозгом за десять тысяч лет интенсивных размышлений. Это побольше, чем время существования человеческой цивилизации. Но если мы сделаем какие-то удачные догадки/гипотезы/guesses/предположения о структуре задачи и её предметной области, и они снизят объем вычислений в десять тысяч раз, то проблема будет решена всего за год. И можно будет переходить к следующим, более сложным проблемам.

Ускорение в десять тысяч раз по сравнению с «вознёй» возможно? Бывает ли ускорение на порядки величины по сравнению с «обычной скоростью решения задач»? Да, бывает! Так, квантовые компьютеры уже в определённых классах алгоритмов несравнимо (на много порядков величины) быстрее классических компьютеров, и это квантовое превосходство/quantum supremacy76 быстро увеличивается. Или в 2021 году было предложено ускорение на несколько порядков скорости обучения игры в видеоигры для алгоритмов обучения с подкреплением, и были достигнуты скорости обучения примерно такие же, как у человека. Буквально десяток лет назад речь шла о проблеме, которая вообще не решалась, компьютер не мог обучаться игре в видеоигры! Потом мог обучаться, но требовались огромные вычислительные мощности, и дело было хуже, чем у человека примерно в десять тысяч раз, требовался суперкомпьютер. И вот задача решена предложением нового алгоритма, использующего догадки о структуре знаний при игре77.

Цивилизация (и особенно в ней наука, она ровно этим и занимается) даёт нам разной степени удачности общие предположения о структуре абстрактного (математические объекты) и физического мира и учит формулировать проблемы. Это приобретённый, выученный интеллект: он позволяет решать задачи в десятки тысяч (а то и более) раз быстрее, чем это могло бы быть сделано необученным структуре окружающего мира интеллектом как «аппаратной» частью мозга «дикого» человека, не получившего образования. Цивилизованный человек, мозг, интеллект (это всё вложенные части, в быту мы используем все выражения)  это обученный, образованный человек, мозг, интеллект. Цивилизованный интеллект (мозг, человек) содержит в себе не только врождённые мыслительные способности, врождённое мыслительное мастерство, но и приобретённое/выученное. Интеллект цивилизованного человека оказывается не таким уж естественным: часть его «аппаратна», но часть «программна», прошита цивилизацией в мозгу  это ничем не отличается от любого другого вычислителя. Интеллект смартфона тоже есть врождённый (аппаратный, от микропроцессора конкретной марки), а есть приобретённый  от прошивки производителя, и от конкретного мастерства его прикладных программ. Другое дело, что интеллект смартфона очень слабый, ибо микропроцессор его очень ограниченной производительности, даже с учётом того, что в современных моделях смартфонов используются аппаратные ускорители для нейросетей, да ещё и алгоритмы прошивок абсолютно не универсальны в части возможности решения разных классов проблем.

Помним, что сила интеллекта в его универсальности, а для универсальности нужна скорость работы вычислителя и разнообразие его алгоритмов: есть теорема отсутствия бесплатного обеда/no free lunch theorem, в которой говорится, что один алгоритм не может быть универсально эффективным для всех классов задач, поэтому для универсальности требуется много разных алгоритмов работы вычислителя. Об этом подробней говорится в книге Педро Домингоса «Верховный алгоритм», которую мы рекомендовали для начального знакомства с подходами к конструированию машинного интеллекта как вычислителя с универсальным (master, верховным) алгоритмом.

Итого: приобретение нового мастерства и у человека, и у AI, и у компании не через чисто «природную смекалку» человека, AI или коллективную смекалку людей и компьютеров в компании, а через «облагороженную образованием смекалку», через получаемые из культуры путём «импорта» готового знания о структуре мира и структуре задач  и уже к этим «импортированным» знаниям предобучения добавляется «возня»/tinkering, «опыт».

Трансдисциплинарный интеллект-стек

Мастерство/умение и навык/скилл/skill  это вычислители для рассуждений по какой-то прикладной дисциплине или трансдисциплине, интеллект  это набор таких вычислителей по разным видам мыслительных практик, поддерживающих рассуждения с объектами и по правилам/объяснениям трансдисциплин этих практик, и с использованием необходимых для этого инструментов. Инструменты тут чаще всего  моделеры, использующиеся для «усиления памяти», даже ручка-бумажка, но иногда для усиления именно вычислений  компьютерные имитационные модели или даже просто калькуляторы.

Трансдисциплины  это и есть сведения о структуре мира, которая оказывается удобной для практик скоростного мышления, мыслительного мастерства быстрого разбирательства с новыми ситуациями. Трансдисциплины  это дисциплины о дисциплинах, наиболее общие мыслительные шаблоны о более конкретных мыслительных шаблонах, используемых для каких-то более конкретных предметных областей. Логика позволяет обсуждать, логичны ли рассуждения какой-нибудь астрологии или квантовой теории поля, онтология позволяет обсуждать объекты мышления в машиностроении и менеджменте, и так со всеми трансдисциплинами.

Проблема, которая займёт всё время очень смекалистого дикаря на полжизни, у обученного мышлению с использованием трансдисциплин человека может занять несколько часов, или даже несколько секунд (особенно, если такой человек будет использовать компьютерный экзокортекс).


Трансдисциплин множество самых разных, они выстроены в условный стек («стопку»), поскольку внутри рассуждений о каких-то одних типах объектов одних трансдисциплин будут использованы рассуждения о других типах объектов других трансдисциплин. Мы называем такой условный (потому как там всё-таки полноценный граф, а не какая-то последовательность, но в целях упрощения мы это игнорируем и продолжаем говорить о «стопке») стек трансдициплин, использующихся для рассуждений о самых разных предметных областях, в том числе предметных областях друг друга, интеллект-стек. Приведём его в обратном порядке, снизу-вверх, чтобы было понятней, как одни трансдисциплины пользуются в своих объяснениях уже введёнными другими трансдисциплинами объектами:

Понятизация учит выделять какие-то типизированные (тут явное забегание вперёд: понятие типа будет определено в интеллект-стеке позже, но мы предупреждали об условности предлагаемой последовательности практик) фигуры из фона и делать их предметами рассмотрения, давать какие-то имена этим фигурам. Роль  поэт.

Собранность учит удерживать во внимании «объекты», которые уже вытащены понятизацией. Это делается не «чистым мозгом», а при помощи внешней аппаратуры памяти и поиска в ней. Так что роль  «собранный», и этот собранный  киборг. Впрочем, интеллект-стек относится и к AI, так что «киборг» тут условно, только для людей, чьё внимание усилено компьютерными средствами.

Семантика учит связывать физические/реальные объекты с математическими/абстрактными/ментальными/идеальными, а также работать со знаками, обозначающими объекты. Если вы вытащили своим вниманием объекты из пестроты окружающего мира, можете удержать их во внимании, то дальше можно обсуждать эти объекты, представляя объекты знаками. Роль  семантик.

Математика учит тому, какие бывают «ментальные» объекты, как они могут себя вести, каким образом конструируются одни из других. Роль  математик.

Физика учит тому, какие бывают физические объекты в реальном мире, а также каким образом мы используем математические/ментальные объекты с хорошо изученным поведением для представления физических объектов с целью рассуждений о них. Роль  физик.

Теория понятий учит тому, как мы думаем о понятиях  математических/абстрактных/ментальных объектах, которые представляют физические объекты. Человеческий мозг (а значит, и AI, если его научить) представляет понятия или в виде объектов и отношений (теоретическая теория понятий), или как какие-то объекты-прототипы и объекты с описанием некоторых отличий от прототипа (теория прототипов), и это даже не единственные два варианта, есть и ещё. Логика хорошо будет работать с теоретической теорией понятий, а вот метафоры и всякая художественность  с теорией прототипов. Это пригодится для всех последующих обсуждений. Теория понятий учит машинке типов: что все объекты в каком-то смысле подобны друг другу, и это описывается типами. Примеры часто встречающихся типов отношений в теоретической теории понятий  это классификация, специализация, композиция. Появляются и конструктивные теории понятий, где объекты «конструируются» путём каких-то операций, а не просто представляются объектами и отношениями. Роль  типолог.

Онтология учит отвечать на вопрос, каким способом мы описываем/моделируем мир: как мы определяем важное и неважное (моделирование), как мы используем модели для ответа на вопросы (рассуждения на основе моделей). Мы разбираемся с мета-моделированием (описания как абстракции получаются не произвольно, но абстрагирование управляется абстракцией более высокого уровня), разбираемся с тем, что вещи/системы на разных системных уровнях (то есть уровнях по отношению часть-целое) описываются по-разному, ибо при взаимодействии частей получаются новые свойства (эмерджентность). Модели задействуют понятия (используем теорию понятий, в том числе пользуемся идеей конструктивной онтологии, понятия которой получаются путём применения операций, а не обсуждая отношения «вечных понятий»). А ещё модели используются для проведения по ним рассуждений с целью предсказания будущего состояния мира (демоделирование/рендеринг/порождение), тем самым после разбирательства с онтологией мы уже готовы заняться рассуждениями и объяснениями. Роль  онтолог.

Алгоритмика говорит нам о том, как эффективно (с наименьшей затратой ресурсов) вычислять, то есть проводить каким-то физическим устройством (универсальным компьютером) заданные последовательности операций (алгоритмы) над содержимым какой-то памяти, представляющей собой знаки для математических объектов. Алгоритмика тесно связана с понятием интеллекта, так как интеллект  это программно-аппаратно реализованный универсальный алгоритм, способный с большой эффективностью вычислять самые разные функции. Но физическая природа компьютера не позволяет одинаково эффективно вычислять что угодно, а алгоритмика изучает, что же возможно в этом плане сделать на текущей аппаратной базе, какие последовательности операций на той или иной аппаратуре наиболее универсальны и эффективны. Математик, физик, компьютер  это универсальные вычислители, то есть физические объекты, поведение которых как-то отражает поведение математических/идеальных/ментальных/абстрактных объектов. Алгоритмика тем самым и про живых людей с их рассуждениями/вычислениями, и про классические компьютеры с их рассуждениями, и про квантовые компьютеры с их рассуждениями/вычислениями  всё это просто разные типы физики вычислителей. Роль  алгоритмист.

Логика говорит, какие есть способы вычислений как рассуждений над моделями, дающие наиболее безошибочные результаты: логический вывод, функциональная оценка, вычисления математических функций, интуитивные оценки в человеческом мозге, прикидки, предсказания, и т. д. Онтология для этого уже рассказала про то, как мы нарезали мир на типизированные (или сконструированные) объекты, описав эту нарезку какими-то моделями, алгоритмика уже рассказала, что такое рассуждения-как-вычисления, так что методы рассуждений работают как алгоритмы с моделями.

Рациональность занимается созданием правильных объяснений. Объяснения представляют собой теории/модели, которые рассказывают о причинах и следствиях в физическом мире. К этому моменту, если мы изучали интеллект-стек в последовательности «снизу вверх», из онтологии уже известно про разнообразие моделей, из логики  о разнообразии правил рассуждений. Математика даст возможность оценить формальность работы с причинами и следствиями, физика позволит говорить о соотношении того, что мы представляем рациональными моделями и того, что происходит с реальным миром. Роль  разум, который не приемлет кривых объяснений и нещадно их критикует, а модели использует для принятия решений о деятельности.

Назад Дальше