Интеллект-стек 2023 - Левенчук Анатолий 13 стр.


разбогатеет Марина, у неё средний IQ, поэтому у неё всё сбалансировано ### Нет, нельзя сказать, кто разбогатеет. Богатство практически не зависит от IQ, а «всё сбалансировано»  это вообще непонятно, что имеется в виду.

??? Кто из них стал самым успешным учёным, если известно, что все трое пошли в науку?

+++ нельзя сказать ### Да, это невозможно сказать, ибо успех в науке больше определяется случаем, упорством, организованностью, задействованием компьютеров, но не IQ.

лучше всех станет Дженнифер, у неё IQ выше всех ### нет, нобелевские премии получают учёные не с самым большим IQ, равно как разброс по IQ среди именитых и продуктивных учёных весьма велик. Может быть, великим учёным станет именно Дженнифер, но не по причине её высокого IQ.

Мышление  это функция/поведение/назначение интеллекта

Мышление  это поведение интеллекта, его функция. Интеллекты бывают разной направленности (удачные для разных классов проблем, которые только можно представить во вселенной  помним, что вычислители неодинаково эффективны для разных классов вычислений, теорема об отсутствии бесплатного обеда), разного калибра/силы/уровня/общности/эффективности в части «отращивания» разных видов прикладного мастерства. Учим интеллектам разной направленности и силы  учим мышлению разной направленности и силы. Качество мышления обученного нами интеллекта мы должны смотреть не на знакомых ему в ходе обучения ситуациях, и даже не на знакомых нам, его учителям, ситуациях, а на незнакомых ситуациях  на решении проблем, которые ранее ещё не встречались. И не в условиях «экзамена», а в условиях реальной жизни, в реальных проектах. Интеллект  это когда ты изучаешь что-то новое, научаешься новым мыслительным операциям, которые потом войдут в прикладное мастерство.

А что же с мышлением в ходе решения прикладных задач? Если будут затыки/проблемы, то это будет мышление. Если просто вы ещё и ещё раз будете решать знакомую вам задачу, то это будет не мышление. Мышление  это когда один алгоритм-интеллект составляет другой алгоритм-объяснение, кодирует правила рассуждений в объяснениях для незнакомой ранее предметной области. Если же просто производится работа прикладного вычислителя-мастерства, то в нашем случае это прикладные рассуждения, работа уже выученного робота, автоматизм. Конечно, это очень условное разделение, но оно кажется полезным, если обсуждать, каким образом прирастают знания и умения агентов. Прирост знаний  результат мышления, которое с учётом выхода «вычислений» в физический мир (эксперименты) называют «познание», а в машинном интеллекте предпочитают называть learning.

Конечно, мышление включает «просто рассуждения»/inference! Без этого никак! Это всё вычисления как операции над изменениями информации, записанной в памяти, причём эти операции делаются по определённым «правилам вывода/рассуждений/inference»  это и есть «рассуждения»/inference. Но вот использование знаний, полученных мышлением  это «просто рассуждения», а не «рассуждения мышления». Нам просто удобно разделить рассуждения::вычисления на происходящие при мышлении интеллекта и происходящие при пользовании прикладным мастерством. Так что интеллект можно задействовать для улучшения не только прикладного мастерства, но и рассуждений самого интеллекта, отрастить себе новую версию какого-то мыслительного мастерства, или даже отрастить её не в себе, а в инструменте, например, компьютере  или даже в нанятой для этих рассуждений фирме! И всё это оперирование с практиками требует интеллекта.

Если вы умеете читать, то вы просто читаете, задействуете привычное мастерство чтения, а не мыслите про чтение. Если вы умеете считать, то вы просто считаете. Работа интеллекта, мышление нужно было, когда вы знакомились с чтением и письмом, осваивали эти дисциплины. Мышление у вас работает в вузе, когда вам нужно разобраться за пару месяцев с очередной парой толстых томов с формулами. А когда вы уже пятый год на работе просто применяете эти формулы, вы это делаете автоматически, мышления не происходит  пока вы не встречаетесь с проблемой, которой раньше не было. Только в этот момент вы включаете мозг, ту его часть, которая ответственная за интеллект. И эта часть начинает работать  эта работа и есть мышление. Если проблем долго нет, то мозг пластичен: мышление не включается, пластичный мозг потихоньку деградирует, сила интеллекта потихоньку падает. В текущем году это падение с лихвой компенсировано информационно-коммуникационными технологиями: раньше нужно было «придумать решение проблемы», сегодня нужно «не забыть погуглить решение проблемы». Проще простого перейти в режим неинтеллектуальной обезьянки, которая проблемы не решает, но бодро щёлкает задачки, на которые она была надрессирована раньше  и так живёт годами, пока не окажется, что интеллект совсем зачах, прошивка мозга устарела, жизнь несётся мимо, и непонятно как вернуть те времена, когда интеллект в ходе обучения и решения проблем непрерывно усиливался, а не деградировал. Интеллект должен расти всю жизнь, это не дело, когда мышлением люди занимаются последний раз в вузе!

Напомним, что поведение вычислителя определяется не только и даже в силу универсальности вычислителей, не столько аппаратурой (хотя скорость работы аппаратуры и физика в основе работы аппаратуры  биологические нейроны, классическая электроника, квантовые явления влияют на поведение вычислителя), сколько программным обеспечением, «софтом». Тезис Тьюринга-Чёрча-Дойча про универсальность вычислителя говорит, что все вычислители независимо от физической их природы умеют вычислять ровно столько же видов функций, сколько простейшая машина Тьюринга, просто скорость вычисления будет разная. Этот тезис подробно раскрывается Дэвидом Дойчем в его книжках. И вообще, граница между аппаратурой и софтом весьма размыта.

Мы это для случая интеллекта-вычислителя и мышления как его вычислений формулируем так, что интеллект может быть не только врождённый «аппаратный» (человеческий, машинный, человеко-машинный, коллективный для людей и машин как аппаратных вычислителей, пришедших «с завода», без «предустановленного софта», необразованных), но и выученный/learned. И машины, и люди, и даже коллективы должны быть обучены, чтобы в них появился «софт» алгоритмов сильного интеллекта. Врождённого интеллекта никогда не хватает!

Можно говорить как об усилении интеллекта (вычислитель как функциональный объект), так и об усилении мышления (поведение вычислителя, его функция)  по сути, это одно и то же. «Мышление» неуловимо, как и любое поведение/работа: процессы сложно представлять, их сложно обсуждать. А интеллект как функциональная часть мозга, ответственный за освоение нового мастерства  вполне понятно, как о нём думать. В нужный момент, при появлении новой задачи, он включается, и начинает мыслить, то есть мастерить другую функциональную часть мозга, которая называется «прикладное мастерство» и будет ответственна за рассуждения по решению «на автомате» какого-то класса прикладных задач. Или даже какое-то мастерство (например, в логике) может быть ответственно за решение «на автомате» задач самого интеллекта! Поэтому развиваем интеллект (в инженерии было бы «создаём и развиваем», но мы не создаём врождённый интеллект в людях, а только развиваем его. Но в случае AI мы этот интеллект ещё и создаём), а уже потом развитый/усиленный интеллект проявляет сильное мышление во время его использования.

Всё, конечно, не так просто. Мы говорим про функциональную часть мозга, или функциональную часть компьютера, или функциональную часть мозга и компьютера вместе (гибридный интеллект человека и компьютера), или функциональную часть мозгов и компьютеров группы людей, да ещё и с неизвестным сегодня науке способом реализации конструктивными частями  анатомическими структурами мозга. Разве что в случае компьютеров тут можно рассказывать, как именно происходит мышление или рассуждения, но и тут есть оговорки: если речь идёт о компьютерных нейронных сетях, то до сих пор не очень понятно, как именно они работают. Но главное: никакой мистики, никакой психологии! Мышление, интеллект, правильные рассуждения, мастерство  обо всём этом мы можем говорить инженерно, и включать в рассуждения не голого человека, и обязательно одного, а команды людей с их компьютерами. И обсуждать как познание (обучение и исследования, образование и науку), так и работу с достижением целей на основе уже познанного: приложение мастерства.

Важно различать в обучении то, что ведёт к усилению интеллекта (знаний о том, как получать знания, как решать проблемы) и что ведёт к увеличению объёма прикладных знаний (знания о том, как решать какие-то известные классы задач, например, «умножать столбиком, если под рукой нет калькулятора, хотя сегодня калькулятор под рукой есть всегда»). При всей условности различения этих знаний, для образования нужно приоритетно выбирать знания по усилению интеллекта, то есть знания практик интеллект-стека: трансдисциплины интеллект-стека и инструменты (прежде всего моделеры) для поддержки рассуждений по этим трансдисциплинам. Это позволит решать всё более и более сложные проблемы, в том числе проблемы, связанные с развитием практик самого интеллект-стека.

Чему учиться уже образованным?

Занимаясь парой-тройкой прикладных практик, умнее не станешь, интеллект не разовьёшь. Для усиления интеллекта надо заниматься трансдисциплинами: сначала просто освоить лучшие их версии, известные на сегодняшний день, а потом пытаться решать проблемы создания новых версий трансдисциплин интеллект-стека, которые будут лучше сегодняшних (то есть заниматься мышлением по поводу самого мышления).

Трансдисциплины могут быть неосознаваемые «народные», «самопальные» («здравый смысл», а не математическая логика), или наоборот  хорошо осознаваемые лучшие известные на данный момент человечеству, SoTA. Много ли таких SoTA трансдисциплин вы изучали в школе, бакалавриате, магистратуре традиционной государственной системы образования? Можно поспорить, что ничтожное количество. Вот физкультура там была предметом, который понятным образом влияет на качество последующей жизни: здоровое тело может долго поддерживать ясность внимания, меньше уставать за полный рабочий день. Но даже физкультура (главным образом командные игры: баскетбол, волейбол, и немного лёгкая атлетика) не подавалась для этих целей. А для чего? А непонятно для чего! Для сдачи норм ГТО («готов к труду и обороне»), рудимент эпохи примата физического труда и милитаристской организации общества.

Большинство других предметов имели более чем прикладное значение (даже физика и математика!), сегодня их знание не помогает ориентироваться в непрерывно меняющейся жизни, не используется никак. Когда вы в последний раз задействовали знание различия дифракции и интерференции из курса оптики или закона Кирхгофа из раздела «Электричество» школьного курса физики? Сходу можете сказать, чем отличается момент инерции и импульс? А это вы всё учили как «базовые знания, которые пригодятся в жизни»! Ну что, пригодились ли в жизни, или пригодились только при сдаче экзамена и при изучении вузовского курса физики, который так же в жизни никак не пригодился? А учили ли вас логике как искусству правильных рассуждений, и если таки случайно учили, то сколько времени от времени всей школьной и вузовской программы? И какой версии логики вас учили? Аристотелевская логика ведь давно была «уволена» примерно так же, как была уволена теория флогистона и алхимия: она плохо работала! Нашлись варианты логики получше, state-of-the-art.

Прошивку интеллекта, полученную «исподволь» (не прямым обучением трансдисциплинам, а путём накопления более-менее случайного опыта при изучении каких-то прикладных дисциплин) в традиционном образовании, нужно менять на современную текущего года, нацеленную на будущую жизнь в условиях полной рабочей неопределённости. Помним, что интеллект работает в условиях, о которых не догадывается ни ученик, ни его учитель.

Вспомним игровую метафору. Мышление как работа интеллекта нужно, чтобы научиться играть разные проектные роли в проектах, как в ролевых играх. Мастерство в каких трансдисциплинах, исполнение каких ролей даст нам мастерство в мышлении, то есть мастерство справляться со всё новыми и новыми ситуациями, с новыми и новыми задачами? Ведь каждый раз, когда нам нужно зайти в проект, интеллект должен выбрать подходящее мастерство, сориентировать агента на занятие роли, далее следить, чтобы не было проблем. То есть мы видим агента-киборга внутри проекта в какой-то роли



Мыслительные практики (практики, которые исполняет интеллект) тоже имеют названия ролей, которые занимает агент, чей интеллект выполняет эти практики. И эти практики работают с какими-то функциональными объектами: суть практики в том, чтобы выделять вниманием из пёстрого и мелькающего окружающего и виртуального/ментального/абстрактного миров объекты и проводить с ними какие-то рассуждения по правилам.






Конечно, трансдисциплины интеллект-стека в любой его версии представляют собой плотно сплетённую сеть («клубок») объяснений, в которых они тянут какие-то тематические нити, плотно спутанные между собой. Примерно так об этом говорит Дэвид Дойч в книге «Структура реальности», он там выделяет четыре объяснительные нити, которые он считает самыми важными как лежащие в основе всех других объяснений, да ещё и переплетёнными так, что объяснения каждой из них невозможны без объяснений других нитей:

 Квантовая физика. Дойч считает, что фронтир тут  в интерпретации многих миров Эверетта.

Эволюционная эпистемология и критический рационализм Поппера

Вычисления и универсальный компьютер Тьюринга

Меметика и эволюция мемов Докинза


В наш вариант интеллект-стека всё это вошло, но мы не просто перечисляем какие-то объяснения. Мы, как и Дойч, говорим, что эти объяснения дают возможность бесконечного познания, в том числе бесконечного усиления интеллекта, но мы ещё и говорим, что этим объяснениям надо целенаправленно учить и людей, и AI. Поэтому у нас есть задача нарративизации, то есть последовательного изложения этого клубка идей в развёрнутом тексте учебных курсов. Мы весьма условно растягиваем клубок объяснений разных трансдисциплин на отдельные части и располагаем их весьма условно в виде стека. Мы просто очень грубо оценили, что трансдисциплины/объяснения верхних уровней стека используют трансдисциплины/объяснения более низких уровней больше, чем наоборот (помним, что это плотно перепутанная сеть объяснений!).

Мыслительное мастерство поэтому нельзя приобрести, если просто «выучить всё снизу вверх». Нет, поскольку там клубок, то для того, чтобы последовательное изложение трансдисциплин как-то собралось в голове в связную картину мира, потребуется специальная организация учебного курса. Упоминание понятий, которые ещё не объяснены, неизбежно  и поэтому либо потребуется дважды проходить короткую последовательность курсов, чтобы откорректировать на втором проходе непонимание первого прохода, или иметь длинную якобы «однократную» версию с неизбежными повторами.

Назад Дальше