Карьера продакт-менеджера. Все что нужно знать для успешной работы в технологической компании - Баваро Джеки 9 стр.


Чтобы сформировать метрики успеха компании, понадобится кросс-функциональный корпоративный процесс, а также поддержка и участие многих коллег. Обозначьте, какие проблемы в связи с текущими показателями успеха видите вы, и попросите сотрудников разных отделов и направлений рассказать, что видят они и какие опасения у них возникают в связи с изменением метрик.

В конце этой главы мы дали некоторые рекомендации о том, как правильно выбрать нужные метрики и показатели.

Смотрите также разделы «Значимые показатели против метрик тщеславия» на с. 66 и «Пиратские метрики» на с. 67.


ОТВЕЧАТЬ ЗА ПРИБЫЛИ И УБЫТКИ

В некоторых компаниях PM-сеньор отчитывается за то, какие прибыли и убытки (P&L) показывает их структурное подразделение. Это означает, что они выходят на другой уровень ответственности, где им приходится работать не только с командой разработчиков, но и с другими группами, например отделом продаж или маркетинга. PM в данной позиции отвечает не только за создание отличного продукта, но и за то, чтобы тот приносил достаточную прибыль и не вызывал лишних затрат.

Если вы отвечаете за P&L, вам приходится вести бюджет своей команды с кем-то из отдела финансов. Бюджет содержит плановые и целевые показатели на год, обычно с разбивкой на кварталы или месяцы. В нем учитывается количество людей, которых вы собираетесь нанять на каждую позицию, затраты на рекламу и другие издержки. Также он включает в себя доход, прогнозируемый на основе дохода предыдущего периода, сезонности, численности персонала отдела продаж, маркетинговых мероприятий и запуска продуктов[30].

Может показаться, что правильный прогноз получить невозможно; но, к счастью, он и не требуется. Илай Лернер (Ely Lerner), отвечающий за P&L в Yelp, поделился своей точкой зрения:

«Скорее всего, вам никогда не удастся составить точный прогноз, поэтому мой совет таков продумывайте все на шаг вперед, чтобы заранее видеть возможные ошибки. Так у вас будет больше времени, чтобы исправить недочеты и сообщить об изменениях другим заинтересованным участникам. Полезно подготовить консервативный финансовый план для стейкхолдеров, а перед своими командами поставить более амбициозные внутренние цели пытаясь их выполнить, они достигнут нужных результатов».

При составлении бюджета, особенно в публичной компании, приходится давать обоснование тех или иных инвестиций. Предположим, ваша стратегия состоит в том, чтобы максимизировать прибыль, или в том, чтобы повысить вложения для увеличения доли на рынке. Любой из вариантов может сработать, но ваша задача убедить инвесторов в том, что вы делаете правильный выбор.

Прогнозирование играет большую роль, потому что цели, которые вы ставите, и ваша способность их достичь отражаются на стоимости акций компании напрямую. Это, в свою очередь, влияет на уровень компенсаций и может даже повысить риск того, что активные инвесторы получат контроль над вашей компанией[31].

Каждый месяц или неделю вы будете отчитываться о прогнозах и анализировать, что на них влияет. Если начнут снижаться доходы или вырастут расходы, вам придется разобраться, почему это происходит. Со временем вы построите дашборды и модели, которые помогут вам быстро определять, в какой части воронки идет отставание.

Анализ движущих факторов может показаться сложным. Но, как сказал Сачин Рекхи (Sachin Rekhi), руководитель по P&L в LinkedIn, такой анализ улучшает продуктовую интуицию и способен сделать из вас хорошего PM:

«Теперь, выдвигая инициативу, вы будете думать о том, какой движущий фактор она будет стимулировать и как сильно. Понятно, что вы не можете быть точны на 100 %, но в конце каждого квартала вы сможете оценить, что действительно было сделано, и интуитивно понять, какие дополнения и изменения продукта привели к тем или иным значимым показателям».

Если что-то пойдет не по плану, вместе с командой вы сможете решить, за какие рычаги потянуть, чтобы вернуть процесс в нужное русло. Можно переориентировать бюджет с долгосрочных ставок на более краткосрочные проекты, например на рекламу. Или попросить инженеров разработать инструмент, который повысит продуктивность отдела продаж.

Практики роста

ИСПОЛЬЗУЙТЕ БЕНЧМАРКИ ДЛЯ ОСМЫСЛЕНИЯ ДАННЫХ

В начале карьеры я думала, что PM должен держать в голове множество разных сведений о продукте, и меня это очень пугало. Я не могла понять, зачем помнить наизусть количество пользователей продукта или темпы роста прибыли от его продаж. Мне сразу вспоминался урок истории, где я с трудом пыталась запомнить какие-то важные даты. Иногда я даже сомневалась, создана ли я для того, чтобы быть PM.

Моим спасением стало использование бенчмарков, которые добавляли определенный контекст и показывали важность тех или иных значений. Бенчмарки это опорные точки, отраслевые стандарты или принятые в компании нормы, основанные на прошлых запусках продуктов.

Например, у венчурных компаний есть бенчмарки доходов и роста, используемые для оценки работы продукта.

При изучении данных выберите некую контрольную точку, чтобы понимать, как интерпретировать те или иные значения.


УЧИТЕСЬ ИНТУИТИВНО ПОНИМАТЬ ДАННЫЕ

Со временем вы научитесь лучше распознавать важные сведения среди информационного шума. Это похоже на магию, но на самом деле этот процесс основан всего лишь на узнавании паттернов, с которыми вы уже сталкивались в прошлом.

Вы можете развить свою интуицию, если присмотритесь к тому, как другие люди анализируют данные и выявляют закономерности. Примите участие в разборе эксперимента или изучите материалы прошлых разборов. Попытайтесь увидеть смысл в цифрах и понять, какая история стоит за ними.


ПОВЫШАЙТЕ КАЧЕСТВО ЭКСПЕРИМЕНТОВ

Эксперименты полезны, но это вовсе не значит, что их нужно использовать для проверки каждой идеи или разрешения любого спора. Провалить эксперимент это нормально, даже хорошо. Но их подготовка и проведение отнимает массу времени. И если вы слишком часто терпите неудачу, вероятно, вы неразумно тратите время своей команды.

Нунду Джанакирам (Nundu Janakiram), директор по продуктам для пассажиров Uber, рассказал о том, почему важно повышать эффективность экспериментов:

«Хорошие PM учатся на ошибках а лучшие меньше ошибаются.

Тщательное изучение потребностей пользователей избавляет от множества ошибок. Благодаря глубокому пониманию взаимоотношений клиентов с вашим продуктом вы сможете проводить более эффективные эксперименты.

Из-за большого количества скрытых издержек чрезмерное увлечение экспериментами может затормозить процесс принятия решений и замедлить импульс вашего роста. Не стоит каждый раз задавать себе вопрос Почему бы нам просто не провести тест?, чтобы рассеять внутренние сомнения.

Направьте свою энергию на эксперименты, которые дадут ответы на самые важные вопросы и позволят вам уверенно продолжать разработку продукта. Самые сильные PM реже ошибаются, потому что эффективно применяют полученные знания. Со временем они приобретают навык интуитивного понимания продукта, и для получения хороших результатов им требуется намного меньше экспериментов».

Если какой-то из экспериментов провалился, не торопитесь подумайте, как можно было выявить проблемы раньше. Хорошо ли вы спланировали и провели эксперимент? Можно ли было проверить идею при помощи прототипа, прежде чем проводить тесты?

Концепции и фреймворки

ЗНАЧИМЫЕ ПОКАЗАТЕЛИ ПРОТИВ МЕТРИК ТЩЕСЛАВИЯ

Хорошие метрики дают реальное представление об эффективности вашего продукта и о том, улучшается ли его качество. Плохие вводят в заблуждение и являются всего лишь «метриками тщеславия»: они могут казаться положительными, но на деле не играют роли в успехе компании.

Рассмотрим для примера такие метрики, как общее количество зарегистрированных пользователей или ежедневные просмотры страницы. На первый взгляд эти показатели кажутся потенциально полезными. Нам действительно может казаться важным число пользователей и объем трафика.

Но имеют ли эти данные прикладную ценность? Означает ли рост этих показателей, что продукт стал более успешным? (Задумайтесь, так ли это в отношении общего количества зарегистрированных пользователей и ежедневных просмотров.)


 Общее количество пользователей: оно растет с течением времени и просто не может уменьшиться. Поэтому, безусловно, увеличение этого показателя не означает рост успеха продукта.

 Ежедневные просмотры страницы: иногда этот показатель имеет значение, но просмотры можно произвольно накрутить за счет разбиения какой-нибудь статьи на несколько страниц.

Эти показатели не что иное, как метрики тщеславия, которые могут расти даже при плохом раскладе. Они не позволяют команде понять, какие изменения помогают бизнесу, а какие ему вредят.

Хорошие метрики это те, которые коррелируют со стратегическим и долгосрочным успехом. Они подтверждают, что продукт работает так, как того хотят клиенты и бизнес, всегда достаточно конкретны и полезны с практической точки зрения.

Как правило, они представляют данные за неделю или месяц (например, удержание клиентов за первую неделю) или дают разбивку значений на одного клиента (например, средний доход на одного пользователя, или ARPU average revenue per user). Увеличение таких показателей будет с большей долей вероятности отражать реальное улучшение ситуации.


ПИРАТСКИЕ МЕТРИКИ

Один из самых запоминающихся наборов правильных показателей тот, что Дейв Макклюр (Dave McClure) назвал «пиратскими метриками» (в английском языке первые буквы их названий образуют забавную аббревиатуру AARRR)[32]. Это показатели жизненного цикла клиента, и называются они «метриками воронки» (некая метафора дырявой воронки, из которой капает вода). Идея в том, что сверху воронки вы помещаете большое количество клиентов, но потом постепенно теряете их на каждом следующем этапе. Те, кто доберется до самого дна воронки и не «утечет», как раз и дадут реальный доход.

 Привлечение (acquisition): новые пользователи продукта, например число подписок или загрузок в месяц.

 Активация (activation): количество довольных пользователей; для каждого продукта оно представлено своим показателем. Например, для Facebook это может быть добавление семи и более друзей. Для SurveyMonkey получение не менее пяти ответов на рассылку опроса. Как правило, это месячный показатель конверсии, то есть процент новых пользователей, перешедших от знакомства с продуктом к его использованию.

 Удержание (retention): число клиентов, повторно использующих продукт. Отслеживается в виде таких показателей, как количество активных пользователей в день (DAU, daily active users), в месяц (MAU, monthly active users) или их соотношение (DAU/MAU). Также сюда относятся метрики использования, такие как количество минут просмотра видео на YouTube.

 Рекомендации (referral): готовность клиентов советовать продукт другим пользователям. Можно оценивать, например, по количеству отправленных приглашений. Многие компании также отслеживают индекс потребительской лояльности (NPS, net promoter score), рассчитываемый на основе ответов на вопрос: «Какова вероятность, что вы порекомендуете наш продукт?» Этот вопрос показывает, насколько успешным может быть сарафанное радио.

 Доход (revenue): объем дохода. Например, стоимость подписки, приобретение продукта или продажа рекламы. Здесь важно отслеживать пожизненную ценность клиента (lifetime value, LTV), чтобы сравнить ее со стоимостью его привлечения (cost of acquiring a customer, CAC). Существует универсальное правило соотношение LTV: CAC должно быть не менее 3: 1. Когда действующий клиент отменяет подписку, это называется оттоком.


Обратите внимание, что эти метрики тесно связаны с концепцией «Путь клиента» (с. 50). Они подходят для широкого спектра продуктов, но, возможно, их придется слегка доработать, чтобы они отвечали задачам именно вашего бизнеса.

A/B-тестирование и статистика

A/B-тестирование, также известное как сплит-тестирование или онлайн-эксперимент, представляет собой живой эксперимент с имеющейся базой пользователей. Одна случайная выборка пользователей получает одну версию продукта, так называемый вариант, а другая второй вариант. Затем вы сравниваете, какой из вариантов лучше сработал для достижения ваших целей, например увеличения кликабельности или конверсии. Как правило, по завершении теста версия, показавшая лучшие результаты, распространяется среди 100 % пользователей.

Одновременно тестируя продукт на двух случайных группах пользователей, вы можете быть уверены, что любые различия между результатами групп будут обусловлены разницей между версиями. Если вместо этого предложить модифицированную версию всем пользователям, а потом сравнить полученные значения с показателями предыдущего месяца, вам будет сложно понять, какие изменения вызваны внешними факторами, например сезонностью или рекламной кампанией конкурентов, а какие нет.

Некоторые A/B-тесты сравнивают две альтернативы какой-то функции, например синий или зеленый цвет кнопки. Другие сопоставляют текущее положение дел с возможными изменениями, такими как добавление окна поиска в верхней части страницы.

A/B-тестирование невероятно полезно, потому что оно дает реальную информацию о том, как люди действуют на самом деле, а не о том, как они, по их мнению, поступят. Оно наиболее точно отображает действительный эффект от вашего продукта.

Такие мелочи, как надпись на кнопке в форме регистрации, могут значительно повлиять на важные показатели, например количество зарегистрировавшихся пользователей. С другой стороны, A/B-тестирование увеличивает сроки выполнения проекта и может сбить с толку пользователей или вызвать у них раздражение, если они заметят, что видят разные версии продукта. К применению А/В-тестирования нужно подходить очень разборчиво используйте его, только чтобы проверить изменения чувствительных к интенсивному трафику компонентов продукта, которые будут иметь преимущественно краткосрочный эффект[33].


ЧТО НУЖНО ЗНАТЬ О СТАТИСТИКЕ

 Принцип, лежащий в основе A/B-тестирования, достаточно прост сравнить две вещи и выбрать ту, что лучше. Все!

Более сложный вопрос заключается в следующем: как долго нужно проводить эксперимент? Когда вы будете уверены, что вариант 2 на самом деле лучше, чем вариант 1? Вот тут-то и пригодится понимание статистики.

Представьте, что вы пытаетесь определить, «честная» ли у вас монетка, то есть дает ли она равную вероятность выпадения орла и решки. После 20 бросков количество орлов равно 60 %. Значит, монета «нечестная»? Трудно сказать. Однако, если вы подбросите монетку 1000 раз и орел выпадет снова в 60 % случаев, вы можете сделать вывод, что монета, вероятно, и правда не совсем «честная».

Чем дольше идет эксперимент, тем выше наша уверенность в правильности результата. Однако здесь есть нюанс. Эксперименты отнимают много времени, поэтому не стоит проводить их дольше, чем необходимо.

Назад Дальше