Частицы, прилетающие из космоса в северную и южную полусферы Земли, достигают геомагнитного экватора и остаются в своем полушарии. Они иногда проникают за нейтральный слой, но сила поля возвращает их в зону максимальных сил притяжения. Кроме всего прочего позитрон не способен глубоко проникать в земную кору. Заключение о происхождении и характере частицы было предвзятым, т. к. проигнорировано первоначальное направление, прежде чем она залетела в пузырьковую камеру, и рассматривалось только отклонение траектории в сильном электрическом поле. Анализом не подтверждается факт поступления с космическим излучением позитрона. По своим физическим характеристикам позитрон, как носитель положительного заряда, не мог войти снизу в камеру Вильсона и оставить в ней след. Для этого требуется пройти из Южного в Северное полушарие через слои земной коры и внутренние оболочки. Не достаточный уровень знаний о причинах образования зарядов у частиц, устройстве Вселенной и космических силах, не позволяет верить заявлению ученого об открытии отдельной частицы, несущей только положительный заряд и равной по массе электрону. Исследователи, систематически анализирующие результаты экспериментов, должны хорошо понимать природу физического явления при оценке неизвестных им свойств Варианты возможного происхождения следа в камере не рассматривались. Несмотря на слабость теоретического доказательства и отсутствие возможности проникновения позитрона из нижних оболочек Земли, экспертное сообщество признало за Андерсеном приоритет открытия частицы позитрона. Гипотеза Дирака и факты были тенденциозно соединены между собой. Мы имеем дело с тем случаем, когда желаемое выдают за действительное. Порочность подобного познания в том, что ученые не пытались проверить ошибочность теоретической концепции Дирака. Среди ученых, ожидавших экспериментального доказательства предвосхищенного события, а на деле фальшивой теории, действовал принцип: «Ах, обмануть меня не трудно! Я сам обманываться рад!».
Вера Дирака в существование отдельных магнитных полюсов была такой же необоснованной и бесплодной. Физик публикует умозрительные выводы о возможности существования частицы, наделенной магнитным зарядом, другими словами, изолированного магнитного полюса (магнитный монополь). Поиски магнитного монополя космического происхождения начались в конце XX века. Попытки обнаружить экспериментально магнитный монополь не увенчались успехом. Оценивая неадекватную модель критически, Э. Ферми вспоминает реплику Дирака: «Если мы допустим, что во вселенной существует хотя бы один монополь, то электрический заряд окажется квантованным; поэтому магнитной массе монополя надо приписать такую величину, чтобы электрический заряд принимал экспериментально установленные значения. Другими словами, элементарный электрический заряд заставляет монополь (если последний существует) иметь квантованную магнитную массу, и наоборот» [54].
Для понимания явлений микромира недостаточно классических и квантово-механических понятий и законов. Чтобы объективно рассуждать о физическом устройстве микромира, нужны принципиально новые знания о силах, создавших Вселенную. Дирак потратил творческую энергию на разработку бесплодных гипотезпризраков. Причина неудач «прорывных» теорий скрыты в попытках обоснования псевдонаучных явлений. Низкая философская культура подтолкнула ученого к поиску доказательств существования отрицательной энергии, позитрона, аннигиляции. Дирак не был способен проникать умом в суть физических процессов происходящих на уровне образования материальных структур. Иногда он отказывался (о чем писал сам) от принципиальной позиции в тех вопросах, с которыми был не согласен. Одаренный математик, привлеченный к научной работе Н. Бором, большей частью занимался подгонкой теории к результатам опытов. Отталкиваясь от закона симметрии, Дирак предположил, что каждая заряженная частица имеет своего двойника античастицу. За теоретическим «предсказанием» наступила череда «открытий» антивеществ [18, с. 80]: антипротона, антинейтрона, антигелия, антиводорода и других частиц. В предсказаниях Дирака превалирует желание застолбить за собой первенство научного предвиденья гипотетического позитрона и магнитного заряда.
Вызывает сожаление, что академическая наука согласилась с исчезновением частиц материи, что противоречило фундаментальным законам физики и философским представлениям. Ученые придумали такие явления, как аннигиляция, «темная материя», «черные дыры» во Вселенной, отрицательная масса и отрицательная энергия, отрицательная гравитация. В отношении античастиц, которые якобы «открыты» экспериментально, проявлена близорукость и поверхностный подход. Все идеи и теории физиков, связанные с античастицами, философски несостоятельны и неприемлемы. Ложные идеи, модели и закономерности, когда-то взращенные в научной среде, продолжают действовать и в настоящее время. Они препятствуют развитию объективного знания. Деструктивный курс, завел науку в тупик. Сколько времени осталось до краха теории Дирака и подобных ей нам неизвестно, но конец их будет бесславным.
5. Несостоятельность орбитального движения электронов в атоме
До разработки теории строения атома, мировой научной общественности доводились результаты экспериментов показавшие, что вокруг всякого движущегося заряда помимо электрического поля существует также и магнитное поле. В 1819 году Г. К. Эрстед открыл действие тока на магнитную стрелку и показал, что электрический ток создает вокруг себя магнитное поле. В 1907 г. Г. Лоренц изложил следующий теоретический вывод: пока электрон находится в состоянии равномерного прямолинейного движения, он не излучает энергии; начинает излучать, как только его скорость изменяется или по величине, или по направлению [21, с. 89]. Если электрон находится в орбитальном движении, его скорость непрерывно изменяется по направлению, следовательно, должно происходить непрерывное излучение энергии.
По взглядам, господствующим в науке, электрические заряды могут существовать в виде отрицательных электронов, а также положительных или отрицательных ионов. Согласно теории, атом в целом электрически нейтрален. Результаты экспериментов по рассеянию α и β-частиц в веществе, проведенные сотрудниками лаборатории Резерфорда (Гейгером и Марсденом), оказались неожиданными. При прохождении частиц сквозь слой золотой фольги толщиной 0,00004 см, обнаружилось рассеяние. Отдельные α-частицы при столкновении отклонялись на угол больший 90°. Чтобы объяснить большие углы рассеяния α-частиц, Резерфорд в 1911 году выдвинул гипотезу: атом состоит из положительного ядра и окружен электронами, которые обеспечивают нейтральность атома, располагаясь на расстоянии, сравнимом с принятой величиной радиуса атома. Он указал, что причина отклонений это результат взаимодействия частиц с положительным зарядом ядра атома [55]. Согласно воззрениям физиков, ядро атома представляет собой образование большой плотности. В ядре сконцентрирован положительный заряд и сосредоточена практически вся масса атома. По аналогии с планетарной системой, в модели атома предполагается вращение отрицательно заряженных электронов вокруг центрального ядра. Под влиянием внешних причин атом может терять, либо присоединять, один или несколько электронов, превращаясь в положительно или отрицательно заряженный ион. Положительно заряженное тело представляет собой недостаток электронов, а отрицательно заряженное их избыток. В начале XX века возникла квантовая механика (Бор называет ее «новая эпоха в физических науках») и появилась чуждая классической физике интерпретация явлений микромира. В 1905 г. А. Эйнштейн дал теоретическое обоснование фотоэффекту. Идея заключалась в том, что свет испускается и распространяется квантами. Позже Бор напишет: «Исходной точкой стал здесь так называемый квантовый постулат, по которому каждое изменение энергии атома есть результат полного перехода между двумя его стационарными состояниями» [56].
Уверовав в планетарную теорию Резерфорда, Н. Бор обнаружил в модели недостаток: заданная конфигурация электронов не обеспечивала устойчивое равновесие электродинамических сил, действующих в системе атома. Не замечая глубинных противоречий в самой идее, датский ученый внес коррективы в гипотезу и опубликовал в 1913 г. статью «О строении атомов и молекул». Используя «постоянную Планка» и сделав упор на квантовые представления, Бор обосновал линейчатые спектры излучения атома водорода. Для того чтобы гипотеза была жизнеспособной, он сформулировал постулаты. Наиболее спекулятивные из них следующие [57]:
1. Испускание (поглощение) энергии происходит не непрерывно, а только при переходе системы из одного «стационарного» состояния в другое.
2. При переходе системы из одного стационарного состояния в другое испускается монохроматическое излучение. Соотношение между частотой ν и общим количеством излученной энергии Е дается равенством (2.3).
Согласно теоретическим взглядам Бора, законы природы не являются причинными. Поэтому атом из состояния А может самопроизвольно перейти в состояние В с испусканием света. То, что рациональная наука может существовать и после отказа от строгой причинности, удивляло Эйнштейна. Более того, отказ приводит к важным следствиям в области теоретической физики. Эйнштейн говорит: «Однако я должен признаться, что мой научный инстинкт восстает против подобного отказа от строгой причинности. Все-таки приходится признать, что сегодня мы далеки от понимания требований строгой причинности, которые казались такими самоочевидными нашим предшественникам» [58].
Постулаты Бора находятся в противоречии с классической механикой и электродинамикой. Датский ученый утверждает: при расчетах движения электронов обычная механика справедлива только для средних значений; допущение напрашивается само собой. Бор признал, что второе допущение находится в явном противоречии с общепринятым пониманием электродинамики, но оно ему представляется «необходимым» для объяснения экспериментально установленных фактов [59]. Согласно мнению ученого, единичный электрон под действием сил притяжения ядра, в отличие от планет, может двигаться по целому ряду устойчивых орбит. Бор исходит из того, что до взаимодействия с ядром электрон находился далеко от него и не обладал заметной скоростью. Заряженная частичка вначале приближается к ядру. Силы Кулона действуют между противоположными зарядами подобно притяжению магнитов. Вместо объединения, электрон начинает преодолевать силы электростатического притяжения и уходить (по невыясненной причине) от ядра на достаточно удаленную в масштабах микромира стационарную орбиту. Положительный заряд притягивает отрицательно заряженные частицы. Бор не приводит доказательств того, что позволяет электронам не приближаться к частицам ядра до полного контакта. Слабость аргументов Бора можно объяснить несоответствием содержания внутреннему устройству атома. Предполагая отсутствие поступления энергии в систему атома, автор теории не решил главные вопросы: какие силы принуждает электроны переходить на орбиты разных уровней энергий и излучать энергию; вращаться в присутствии электрических зарядов других атомов; занимать те точки на сфере вокруг ядра, которые соответствуют минимальной потенциальной энергии системы. Согласно теории, ядро сложная система сильно взаимодействующих, расположенных близко друг к другу большого числа частиц (десятки сотни нуклонов). Рассматривая ядерную модель как систему, в которой выполняются законы небесной механики, невозможно объяснить стабильность атома. Хроническая слабость планетарной модели атома трудность обоснования длительной устойчивости электронов на стационарной орбите. При движении с центростремительным ускорением электрон должен излучать электромагнитные волны. Все электроны в атоме должны были постепенно сближаться с ядром и за короткое время упасть на него, растратив свою энергию.
Бор принял специальные допущения: различным стационарным состояниям соответствует испускание различного числа квантов энергии; частота излучения, испускаемого при переходе системы из состояния, в котором энергия еще не излучалась, в одно из стационарных состояний, равно половине частоты обращения электрона в последнем состоянии [57]. По теории Бора, монохроматическое излучение возникает в момент перехода электрона с орбиты на орбиту и должно непременно испускаться с частотой (ν), равной половине частоты обращения (ω) по своей последней орбите. В расчетах Бора задавалась частота обращения электрона ω = 6,2 10
15
1
rБ
10
v = 2πrω = π 1,1 10
10
15
6
Рассмотрим движение электрона в материальном теле. Известно, что заряд электрона е 1,602 10
19
3
19
3
Vμ19
Плотность тока при упорядоченном движении зарядов определяется выражением [33, с. 378]:
j = n
0
еvс
где n
0
еvс
Теория Бора допускает вращение электронов вокруг ядра атома с огромной линейной скоростью. Подставляя в выражение (2.5) числовые значения, получим суммарную силу токов, циркулирующих в 1 см
3
I = (2,687 10
19
19
6
6
Тепловая энергия, выделяемая на электрическом сопротивлении проводящей среды, пропорционально квадрату тока. Не имеет смысла считать количество теплоты, выделяемое одним кубическим сантиметром газа водорода при стационарных условиях, т. к. она будет гигантской. Если бы все электроны вращались в атомах с расчетной скоростью, то вероятней всего не существовало бы веществ в состоянии кристаллов.
Гипотезу об устройстве атома изложил Резерфорд. Бор подхватил его идею, как установленный факт. Согласно закону электростатики, однотипно заряженные частицы в ядре должны отталкиваться друг от друга тем сильней, чем меньше расстояние между ними. Прежде, чем выдвигать алогичную гипотезу, Резерфорду и Бору следовало бы объяснить, какие силы удерживают положительные заряды в плотном ядре. Понимая, что внутри вещества не существует сил, которые могут заставить электроны вращаться, Бор придумал особые условия. По выражению будущего лауреата Нобелевской премии, допущение, «представляется необходимым для объяснения экспериментально установленных фактов» [57]. Аргумент так себе. Новизна экзотической теории и магия авторитета в науке, вероятно, гипнотизирует большинство ученых. Они соглашаются с утверждением, что электроны вращаются в веществе, не получая при этом энергию из внешнего пространства. Нет оснований принимать, как некий установленный факт, существование сил, которые приводят электроны в организованное движение вокруг ядра. Ученые не желают замечать динамического эффекта, возникающего при движении зарядов в материи. Движение электронов вызвало бы в телах такой нагрев, что на планете давно бы испарилась вода и исчезла жизнь. Для теории Бора трудным является ответ на следующий вопрос: что позволяет электронам занимать нужный уровень и вращаться вокруг ядра, когда прекращается действие сил поля на заряды атома? Адекватность законов квантовой механики, если и доказывается Бором, то с помощью принятия постулатов конфликтующих с фундаментальными законами физики. Теоретик продвигает бесконечную продолжительность вращения электронов в веществе, обладающего электрическим и механическим сопротивлением движению частиц. Очевидно, объективной реальности не соответствует концепция вращения электронов вокруг положительных зарядов ядра и постулаты, принятые Бором. Оппоненты указывали Бору на слабости его гипотезы. Он соглашался с тем, что соблюдение постулата о переходе с одной стационарный орбиты на другую противоречит общепринятым законам электродинамики, но поражения не признал.