Философия и теория «Единого поля Вселенной» - Галисламов Михаил Стефанович 9 стр.


Профессор Колумбийского университета Брайан Грин констатирует, что общая теория относительности, по-видимому, на фундаментальном уровне несовместима с другой чрезвычайно тщательно проверенной теорией  квантовой механикой [94]. Критикуя методологию теоретической физики, В. А. Ацюковский указывает на действие в ней двух течений: одна часть специалистов считает, что задача теоретической физики состоит в том, чтобы вернуться к наглядному описанию, другая часть  что надо отказаться от каких-либо аналогий с макро реальностью, отказаться от наглядности и интуитивно понятных моделей. Ученый видит кризис, возникший в физической науке, причина которого находилась в философской установке: допустимость произвола в выборе исходных физических инвариантов. При создании теорий постулируются исходные положения, признают первичность математического описания по отношению к физическому содержанию [95, с. 38]. По мнению авторов работы [96], такая методология завела физику в тупик.

Индетерминизм в физике  концепция, согласно которой фундаментальные законы природы имеют вероятностный характер, а случай является более закономерной сущностью природы по отношению к необходимости. Одно из направлений квантовой теории было связано с «принципом соответствия». Устанавливая аналогию между классической и квантовой теорией, «находчивость» проявили Н. Бор, Г. Крамерс и Дж. Слеттер. Используя принцип соответствия и понятие волны вероятности, они попытались устранить противоречия, имеющиеся в квантовой теории. Хитрость идеи заключалась в истолковании электромагнитных волн не как реальных, а как волн вероятности, интенсивность которых в каждой точке определяет, с какой вероятностью в данном месте может излучаться и поглощаться атомом квант света [97]. Постулат допускал, что законы сохранения энергии и динамических переменных в каждом отдельном случае могут выполняться, подчиняясь законам статистики и вероятности. В работе подчеркивали «виртуальный» характер поля излучения, которое при современном состоянии науки является «необходимым» для адекватного описания атомных явлений. «Необходимость»  стандартная формулировка теоретиков, утверждающих «новые» истины.

Классическая электродинамика рассматривает непрерывное электромагнитное поле. В квантовой электродинамике взаимодействие заряженных частиц с электромагнитным излучением рассматривается как поглощение и испускание частицами фотонов. В основе лежит представление, что свойства электромагнитного поля прерывные (дискретные). Для внедрения ложных идей в массы требуются выполнить обязательную работу: во-первых, доказать их состоятельность; во-вторых, добиться признания того, что они утверждают. Когда Бор обратил внимание на квантовую теорию, он первым делом пригласил к себе в ассистенты В. Паули и В. Гейзенберга. Студенту четвертого семестра В. Гейзенбергу летом 1922 года Зоммерфельд помог с поездкой в Геттинген, чтобы тот послушать цикл лекций Бора. На одной из лекций Гейзенберг обратил на себя внимание лектора замечанием о воздействии излучения на атом. В частных беседах с Бором, последовавших затем, Гейзенберг пытался осмыслить роль атомной физики и понять задачи, которые решает наука. Во время прогулок с датским физиком у Гейзенберга сформировалось мировоззрение: в науке всегда можно решить, что правильно и что ложно, поскольку она имеет дело не с верой, мировоззрением или гипотезой, а правильными или неправильными утверждениями [97]. Причем, вопрос о том, что правильно и что неправильно, решает природа (Бог), но не люди. Мало значат мнения других ученых.

Защитив ученую степень доктора наук в Мюнхене, Гейзенберг по рекомендации Бора в 1924 г. стал стипендиатом Фонда Рокфеллера и переехал в институт Копенгагена на Блегдамсвее. В Дании он познакомился с молодыми людьми самых различных национальностей (англичане, американцы, шведы, норвежцы, датчане, японцы) работавшими над одной и той же проблемой  атомной теорией Бора. Центры физиков-атомщиков в Геттингене, Копенгагене и Кембридже работали под руководством Д. Франка, М. Борна, В. Паули. Летом 1925 г. Гейзенберг приехал в Кембридж, в лабораторию физика П. Л. Капицы, и там сделал сообщение о своей работе небольшому кругу теоретиков. Среди присутствующих находился молодой студент двадцати трех лет  это был Дирак, который взялся за проблему и в течение нескольких месяцев разработал законченную квантовую теорию атомной оболочки. Известно, что обычно скорость принятия решения и качество находятся в обратно пропорциональной зависимости. Физики используют перенормировку, когда в теории появляются выражения, не имеющие определенного математического смысла. Всякий владеющий этим техническим приемом, понятным для узкого круга специалистов, может нам показаться непререкаемым авторитетом. Квантовая теория продемонстрировала иллюзорность представлений, положенных Гейзенбергом в основу микромира. Метод, как бы научный, производит впечатление видимостью эрудиции, но представляет собой не что иное, как систематическую подмену физических явлений математическими функциями.

Один из создателей современного варианта квантовой теории Р. Фейнман находит, что квантовая электродинамика совершенно абсурдно описывает Природу. По мнению Р. Фейнмана «Уловка, при помощи которой физики находили n и j, имеет специальное название  «перенормировка», он называет ее приемом, рассчитанным на глупцов. Необходимость прибегнуть к такому методу не позволила доказать ученым математическую самосогласованность квантовой электродинамики. Американский ученый подозревает, что перенормировка математически незаконна. Процедуру устранения расходимости в классе теорий, называемых «перенормируемыми», и как проводить конкретные расчеты Фейнман, Швингер и Томонага придумали независимо друг от друга. За это они получили Нобелевскую премию. Фейнман утверждает, что у физиков нет хорошего математического аппарата для описания квантовой электродинамики [68, с. 114].

В области квантовых процессов предполагается прерывность изменения состояний, что вызывает затруднения с причинно-следственной связью. Н. Бор признается, что принцип причинности был отброшен под давлением обстоятельств. Теоретик столкнулся с закономерностями, не поддающимися детерминистскому анализу, относительно атомных частиц [98]. Чтобы обойти несоответствие фундаментальному философскому принципу «непрерывности», отцы-основатели квантовой теории решили вообще им пренебречь. Отражать картину внутреннего мира атома возложили на математические множества и операторы. Происходящее становится абстрактным, в физике теряется наглядность. Использование вероятности для исследования процессов микромира, лишило смысл понятия «что есть в данный момент физическое тело».

В последние годы жизни Эйнштейна его отношение к гипотезе Планка было отрицательным. Он считал неудовлетворительным интерпретацию «пси-функции» этой теории и заявил: «Во всяком случае, в основе моего понимания лежит положение, решительно отвергаемое наиболее крупными современными теоретиками. Существует нечто вроде реального состояния физической системы, существующей объективно, независимо от какого бы то ни было наблюдения или измерения, которое в принципе можно описать с помощью имеющихся в физике средств» [9]. После работ Гейзенберга стало проблематичным понятие «физической реальности». Возник вопрос: что же собственно пытается описывать теоретическая физика (с помощью квантовой механики) и к чему относятся открываемые ею закономерности? В квантовой механике, претендующей на описание реального движения макроскопических тел, Эйнштейну не нравилось ограничение точности, которую давала классическая механика. Чтобы найти ответ, ученый решил посмотреть, что говорит квантовая механика о таких объектах, которые можно «воспринимать непосредственно». Макросистемы и законы, управляющие ими, описываются классической физикой с большой точностью. Единственной приемлемой интерпретацией уравнения Шредингера, по мнению Эйнштейна, является статистическая интерпретация, данная Борном. Но и она не описывает реального состояния отдельной системы, а только позволяет делать статистические высказывания об ансамблях систем [99]. Эйнштейн утверждает: физика должна стремиться к объективному описанию реального состояния отдельной системы.

Обладатели аналитического ума, выдающиеся теоретики  Р. Ч. Фейнман и Э. Шредингер стоят особняком в ряду создателей квантовой механики. Интересы последнего простираются далеко за пределы физической теории. Он точно следует выбранной им философской позиции. Достижения квантовой механики его больше удивляют, чем впечатляют. Он не навязчиво раскрывает ущербность гипотезы ГейзенбергаБорнаИордана, описывающей физические явления: «Луч или траектория частицы отвечает продольной связи процесса распространения (т. е. в направлении распространения), волновая же поверхность соответствует поперечной связи, т. е. перпендикулярно к направлению. Оба способа связи, без сомнения, являются реальными: один доказывается фотографиями Вильсона, другой  интерференционными опытами» [100]. Теория Бора, отмеченная успехами, имела существенный дефект. Решения, применяемые в квантовой теории, используют сложный и недоступный восприятию способ изложения. Претендуя на точное описание стационарных состояний, теория хранит полнейшее молчание о переходных процессах, т. е. о самих «квантовых скачках». Э. Шредингер не согласен с утверждением, что измерения, которыми оперирует квантово-механический формализм, действительно могут быть. Их невозможно выполнить: «Это было сделанное на уровне абстрактного мышления открытие разрывности там, где она меньше всего ожидалась, а именно  в процессе обмена энергией между элементарными материальными системами (атомами или молекулами), с одной стороны, и световым или тепловым излучением  с другой» [8]. Шредингер критически оценивал квантовую механику, чьи представители внушали друг другу идеи на языке понятном лишь малой группе. Он считает, что новая наука самонадеянно присвоила себе право третировать философское воззрение. По мнению австрийского ученого, поддерживая стиль в пределах избранных групп специалистов, теория обречена на бессилие, паралич и не имеет дальнейшей перспективы. Ее будущее  непременный отрыв от остальной человеческой культуры.

Вслед за открытием спина, принципа запрета Паули, волн де Бройля последовали объединение волновой механики Шредингера с матричной механикой Борна и Гейзенберга, открытие «перестановочных» отношений, Дирак изложил волновое уравнение электрона, движущегося в пространстве. Французско-американский физик, основатель современной физики твердого тела Л. Н. Бриллюэн скептически отзывался о бурном развитии квантовой физики. В теориях, следующих одна за другой, он наблюдает одну закономерность: «Вслед за открытием новых экспериментальных фактов следует перестройка теории; при этом наблюдаемые сохраняются, но в сочетании с некоторыми ненаблюдаемыми они ведут к новым предсказаниям, за которыми следуют новые эксперименты и т. д.» [101, с. 25]. В симбиозе теорий с экспериментами ученый находит причину, ведущую к безграничному росту гипотез.

Критическое отношение к теории Планка высказал американский физик-теоретик Ли Смолин: «Я на стороне Эйнштейна и других, кто верил, что квантовая механика является неполным описанием реальности» [102]. Научную позицию он объясняет тем, что в квантовой теории содержатся концептуальные парадоксы, которые в течение десятков лет остаются неразрешенными. Например, непонятно почему электрон проявляется как волна и как частица. Так же ведет себя и свет. Теория дает только статистические предсказания субатомного поведения. Те, кто сформировал теорию, не были реалистами. Они не верили, что человек способен понять устройство мира, независимого от наших действий и наблюдений. Сторонники квантовой механики действуют обычно под знаменем реализма и предлагают ее как прорывную теорию. Кризис в физике частиц, по мнению Ли Смолина, вытекает из теорий, которые предлагались учеными. Они распадаются на две категории: «Некоторые были фальсифицируемы, и они были опровергнуты. Остаток теорий проверке не подвергался  или потому, что они не делают чистых предсказаний, или потому, что сделанные ими предсказания не проверяемы на сегодняшнем уровне технологии».

7.2. Двусмысленность теории света

Гюйгенс, Максвелл и Лоренц не рассматривали прерывистых волновых колебаний. Распространение света ранее описывались в рамках волновой теории. В 1905 г. Эйнштейн нашел решение фотоэффекту, предположив, что излучение, распространение и поглощение света  дискретны. Он же ввел в физику понятие о кванте электромагнитного поля и придал ему значение распределенной в вакууме самостоятельной субстанции, обладающей собственной массой и импульсом. Эти порции (кванты) получили название фотонов. Ввод понятия «кванта энергии» излучения и вычисление численного значения, подвело под формулу как бы теоретическую основу. Формула Планка была найдена эмпирическим путем. Так начался новый период развития теоретической физики. Идеи существования квантов постепенно овладевала учеными. Вопросы, поставленные перед новой теорией, находили решения. Потребовалось немного времени, чтобы основные положения квантовой гипотезы превратились в догму. Заданный в ложном направлении вектор развития науки, привел к постепенному упадку всего естествознания. Попытаемся проследить этапы этого неблагоприятного развития.

Гипотеза дискретности энергии волн, играющая центральную роль в решении, не была обоснована и рассматривалась Планком как «удачно угаданный закон» [103]. Проверка теории опытом показала, что достигается совпадение теоретических и экспериментальных данных. Уравнение, которое верно отражало опытные данные, было справедливым при допущении, что в процессах излучения энергия может быть отдана или поглощена не непрерывно, а лишь в известных неделимых порциях  в «квантах». Рационального объяснения, почему должно быть именно так, у Планка и его сторонников не было. Современников Планка волновал смысл «кванта энергии». В естествознание внедрили представление об энергии, противоречащее непрерывности нарастания изменений. Физическая наука отступила от вековых философских традиций. Многие ученые противились и не желали соглашаться с тем, что излучаемая и поглощаемая осцилляторами энергия всегда кратна h. Относительно квантовой теории лорд Рэлей в письме к Нернсту писал: «Конечно, мне нечего сказать против выводов, вытекающих из квантовой гипотезы, которая в руках способных людей привела к некоторым интересным результатам. Но мне трудно представить, что такая картина в действительности имеет место» [104].

В газах и жидкостях звуковые волны  продольны, частицы колеблются вдоль распространения волны. В твердых телах могут существовать поперечные и продольные волны. Возможность существования электромагнитного поля в форме электромагнитных волн, как самостоятельного вида материи, при отсутствии зарядов и токов,  следствие из уравнений Максвелла [3, с. 245]. Главную роль в опровержении механистической концепции световых волн, как колебаний эфирной среды, заполняющей все пространство, сыграла плоскость колебаний световых волн. Электромагнитные волны поперечны. Колебания векторов Е и В происходят перпендикулярно волновому вектору распространения волны. Электромагнитная волна обладает поляризацией. В 1845 г. М. Фарадей обнаружил поворот плоскости поляризации световых колебаний при прохождении света через вещество, находящееся в магнитном поле [105]. В каждой точке пространства в фиксированный момент времени свойства электромагнитной волны различны в разных направлениях плоскости, перпендикулярной направлению распространения волны, что было воспринято как связь между светом и электричеством. Магнитное поле действует на движущиеся заряды; магнитное поле создают движущиеся заряды [20, с. 209].

Назад Дальше