Нейронный мир – полное объяснение эмпирической реальности. Введение - Кондрат Владислав 2 стр.


Однако ещё более важной особенностью модели НМ следует обозначить преодоление навивного реализма посредством нейронаучной аргументации: большая часть землян автоматически считает, что то, что она видит перед собой  объективная и независимая от деятельности мозга действительность. Именно в этом и заключается наивный реализм  принятие нейронного мира без дискурсивного анализа. На самом же деле всё, что только могут переживать организмы  создано активностью мозга и является вычислительно-предсказательной моделью, работающей по принципу нейронной причинности: при этом НМ так относится к объективной реальности, как копия к оригиналу. Он с неизбежностью парохиалистичен и ограничен жёсткими рамками, прочно детерминирован нейрохимическими процессами.

1.3. Нейрофилософия

Нейрофилософия  это современное ответвление эмпирической философии, цель которого  всеобъемлющее объяснение мира с помощью нейронаучных данных: нейрофилософия использует данные нейронаук для философской аргументации. Но каково её место в философии в целом?


Рис. 1 Европейская философия


Следует заметить, что нейрофилософия в современной форме  совершенно новая область знаний, которая основывается на эмпирических исследованиях мозга, поэтому избегает иллюзии интроспекции, наивного реализма в отношении модели субъекта, модели мира, модели тела. Первым нейрофилософом необходимо признать выдающегося мыслителя А. Шопенгауэра, поскольку именно он доказал, что мир полностью создан мозгом. Понятие «нейрофилософия» было введено нейрофилософом Патрицией Черчленд. Из наиболее влиятельных нейрофилософов можно выделить Т. Метцингера, который интегрировал нейронауку и эмпирическую философию для опровержения иллюзии «я» и доказательства её транспарентности и иллюзорности. Метцингер заложил учение о я-модели, которое модель нейронного мира расширила и довела до наиболее отчётливой формы.

Существует три основных направления в нейрофилософии:

1. Феноменальная, или когнитивная

2. Эмпирическая

3. Теоретическая

Феноменальная  заблуждение, подверженное примитивному дуализму. Остальные  те направления, которые, подняв флаг иллюзионистского физикализма, рубят непроходимый лес заблуждений и иллюзий. Только та философия достойна внимания в наши дни, которая следует 1) эмпирическому принципу, т.е. эмпирична; 2) принципу достаточного основания, т.е. всякое её положение строго доказывается, а не постулируется. Т.е. только эмпирическая философия, коей и является нейрофилософия. Всё же остальное, выходящее за границы проверяемости и доказуемости, с неизбежностью отсекается, как ненужный и пустой хлам. На данном этапе эмпирическая философия стала областью интеграции смежных и разнородных научных данных, попыткой их интерпретации. Иначе и невозможно: абсурдно избегать знаний, которые открывают необъятный потенциал объяснения мира, упираться в пустословие и видимость объяснения, как это делали великие шарлатаны 19 и 20 веков. Однако во все века шарлатаны использовали один эффективный метод борьбы с прогрессом знаний и истины  умалчивание: ничего иного, кроме игнорирования эмпирической истины, им не остаётся, ведь в ином случае они получат по ушам от научного сообщества. Даже в 19 веке непростительно философствование, не опирающееся на естествознание. Тем более это недопустимо в настоящее время: с учётом того, сколько сил потеряно даром по вине религиозников и прочих глупцов в Средневековый период, перед нами одни единственный путь  отсечение любой ерунды и беспощадное уничтожение заблуждений. Вспоминая то, какое влияние на мир слабоумных обезьян оказывают дешёвые сказки и откровенно бредовые философские системы, мы, нейрофилософы, посадим семена истины в парнике добродетели и доведём их до устойчивого состояния, пока корневая система проникает в почву нейросетей, орошая их живительной жидкостью научного знания.

1.4. Четыре столпа нейронного мира

Нейронный мир зиждется на четырёх столпах: 1) на строительных блоках, создающих его форму и структуру  нейронах; 2) на сцепляющем клее, придающем ему относительно устойчивую форму  нейромедиаторах; 3) на глиальных клетках, миелинизирующих нейроны и следящих за «чисткой» нейронных систем; 4) на электромагнитной синхронизации нейронов, связывающей отдельные нейросети и сгустки нейронов в ходе процесса синтеза нейронного мира. В соответствии с этим можно рассматривать НМ с четырёх плоскостей, каждая из которых вносит вклад в конвергирующий химико-физический танец, начинающийся ещё в перинатальном периоде и заканчивающийся со смертью мозга.

1. Нейроны классифицируются по различным параметрам, но здесь остановимся на структурном компоненте, в связи с которым выделяют:

1) Безаксонные

2) Униполярные

3) Биполярные

4) Мультиполярные

5) Псевдоуниполярные

Нейроны разделяются и по количеству отростков, и по дендритам (звездчатые и пирамидальные), и по связям (вставочные и мотонейроны), и по длине аксона (клетки Гольджи 1 типа, нейроны локальных сетей), и по экспрессии генов, однако в данном контексте следует помнить самое важное: нейроны, связываясь вместе, образуют нейросети, которые представляют строительные единицы нейронного мира.

2. Согласно химическим свойствам нейромедиаторов, разделим их на:

1) Низкомолекулярные  быстродействующие нейромедиаторы, что синтезируется из поступающей пищи, например, ацетилхолин: характер рациона питания воздействуют на количество низкомолекулярных нейромедиаторов.

2) Пептидные  пептидные нейромедиаторы, которые образуются на рибосоме нейрона, а упаковываются в мембрану в аппарате Гольджи. За их транспорт отвечают микротрубочки. Процесс их синтеза и транспорта происходит очень медленно в сравнении с низкомолекулярными: посему они действуют медленно. Они участвуют в обучении, формируют привязанность самки к детёнышу, регулируют приём пищи, утоление жажды, удовольствие и боль. Нейропептиды являются метаботропными  не оказывают влияние на мембранный потенциал постсинапсической мембраны.

3) Липидные  преимущественно эндогенные каннабиноиды, синтезирующиеся на постсинапсической мембране и воздействующие на рецепторы пресинапсической мембраны. Являются производными ненасыщенных жирных кислот: анандамида и 2-арахидонил-глицерина (2-AG). Они действуют как ретроградные нейромедиаторы, снижая количество низкомолекулярного нейромедиатора, т.е. интенсивность входящего сигнала.

4) Газообразные  оксид азота (NO), сероводород (H2S), оксид углерода (CO): газы расширяют спектр биохимических моделей регулирования НМ. Синтезируемый газ диффундирует из клетки, замедляя её метаболизм.

5) Ионные  последние данные предполагают (McAllister, Dyck, 2017), [158], что цинк является нейромедиатором: ионы цинка активно участвуют в синапсическом метаболизме, взаимодействуя с различными рецепторами.

3. Нейроглия делится на следующие типы клеток:

1) Эпендимальные клетки (эпендимоциты)  вырабатывают спинномозговую жидкость, выстилая стенки мозговых желудочков.

2) Астроциты  выполняют множество задач, но в основном  опорные: поддерживают и восстанавливают нейроны; составляют часть гематоэнцефалического барьера, участвуют в образовании рубцов после травм; отростки астроцитов обеспечивают обмен питательными веществами между кровеносными сосудами и нейронами; астроциты повышают активность нейронов, передавая сигналы от нейронов к сосудам и усиливая кровоток.

3) Олигодендроциты (олигодендроглия)  производят миелинизацию нейронов в ЦНС: у олигодендроцитов выростов меньше, чем у астроцитов.

4) Мантийные глиоциты  выполняют контроль микросреды симпатических ганглиев.

5) Микроглия  производная глиобластов, т.е. образуется из клеток крови и выполняет опорную, разграничительную, трофическую и секреторную функции: поступает из крови, реализует защитную функцию, утилизируя отмершие клетки. Составляет 20% всех глиальных клеток. В ходе фагоцитоза микроглия поглощает чужеродные ткани и мёртвые клетки мозга.

6) Шванновские клетки  оборачивают периферические нервы, образуя миелин, а также участвуют в поддержании питания нейрона, утилизации выделений. В случае разрыва аксон нейрона ПНС погибает, но шванновские клетки делятся, повторяя путь аксона и реконструируя его структуру, в результате чего нейрон образует новые отростки, которые проникают в «скелет», созданный шванновской клеткой.

Весь нейронный мир разрастается из единых стволовых клеток-предшественниц: и нейроны, и глиальные клетки возникают из качественно одной стволовой клетки: её дальнейшее развитие зависит от воздействия химических веществ и генов, определяющих переход в нейрон либо в глию.

4. Электромагнитные ритмы связывают модели НМ воедино, создавая видимость целостности и прозрачности (транспарентности) их свойств. Подробное описание основных ритмов представлено в гл. 2.

2. Нейронный мир: основные модели

Перед началом описания важно установить значения используемых терминов: модель нейронного мира (МНМ)  учение, а модели нейронного мира  модули, из которых состоит НМ. Нейронный мир распадается на две базовые модели: 1) модель мира; 2) я-модель, создаваемую любым мозгом: будь то муха, акула, шимпанзе либо корова. Мозг всех землян моделирует НМ однородно, что следует из факта качественного единства мозговых ритмов во всех ЦНС [7, стр. 230]. Модель мира можно рассмотреть с двух уровней: 1) эмпирического (ЭМНМ), который содержит все сенсорные модальности, формирующие ЭМПНМ (эмпирическую модель пространства НМ), ЭММНМ (эмпирическую модель материи), ЭМВНМ (времени), ЭМПрНМ (причинности), ЭМРНМ (речи): например, ЭМПНМ распадается на: а) ЭВМПНМ (визуальную модель пространства); б) ЭАМПНМ (аудиальную); г) ЭКМПНМ (кинестетическую); д) ЭОМПНМ (обонятельную); е) ЭВкМПНМ (вкусовую). Точно такие же модели содержит ЭММНМ; 2) абстрактного (АМНМ), заключающегося в диссоциации содержания эмпирических моделей посредством менее интенсивной активации тех же нейронных сетей, которые опосредуют эмпирические модели: например, АВМПНМ (визуальная) представляет диссоциацию ЭВМПНМ, т.е. менее интенсивную активацию нейросетей зрительной системы (не первичной зрительной коры), включающих дорсальный и вентральный потоки, соответственно теменную и височную доли. Это справедливо в отношении любой связи ЭМНМ  АМНМ. Т.е. аудиальное воображение (ААМНМ)  это активация вторичной слуховой коры (A2) [13, стр. 361]. Этот механизм верен в отношении диссоциации всех эмпирических моделей НМ (ЭМНМ).

Общая схема НМ демонстрирует дифференциацию модулей, исходящих из базовых моделей, но это разделение условно и необходимо для наиболее детального описания НМ, тогда как в мозге наличествует единый нейронный процесс, лишенный целостности и состоящий из 87 миллиардов функциональных клеток и квадриллионов синапсов, чем и детерминируется иллюзия двойственности, характерная для нейронных миров всех землян.


Рис. 2 Общая схема НМ [18]

2.1. Общий принцип моделирования НМ

Нейронный мир основывается на электрической и химической активности нейронов, но не следует упускать из виду важнейший аспект, придающий НМ устойчивость  электромагнитную синхронизацию «мозговых соленоидов», как их назвал М. Николелис. Скорость проведения потенциалов действия (ПД)  120 м/с обеспечивает гибридный аналоговый вычислительный механизм, заключающийся как в волновой интерференции, так и синхронизации, т.е. в причинностном взаимодействии ритмов, которые закладывают основание транспарентности НМ [1, стр. 95].

Электромагнитные ритмы  это схемы активации нейронов, связывающие кортикальные и субкортикальные сети в единую систему, создающую нейронный пространственно-временной континуум. Так, эксперимент, проведённый коллегами Николелиса, подтвердил, что после возбуждения небольшого набора нейронов с образованием единого потенциала действия вся сеть распределённых в коре нейронов достигает синхронизации, создавая идеальные ритмические колебания [1, стр. 138]. Это наблюдение исходит из двух механизмов синхронного ритма, который зиждется на однородном принципе нейронной причинности: 1) ритм задаётся водителем ритма, подобно тому, как оркестр управляется дирижёром, где в роли дирижёра может выступать, например, таламус, проецирующийся во все области неокортекса, либо ретикулярная активирующая система (РАС), ингибирующая бета-ритм в неокортексе, тем самым активируя НМ; 2) ритм представляет одновременную активность многих нейросетей, формирующих интерферирующие области возбуждения [8, стр. 231].

Магнитные мозговые поля обеспечивают транспарентность НМ за счёт синхронии: ТМС подтверждает тот факт, что воздействие на создаваемое мозгом поле приводит к наблюдаемым изменениям характеристик НМ. С помощью ТМС можно усилить 1) эффект резиновой руки  иллюзию, заключающуюся в обмане мозга на уровне модели тела и модели мира, когда резиновая рука интерпретируется мозгом как собственная [1, стр. 148]; 2) уменьшить фантомные боли через десинхронизацию ритмов, моделирующих фантомные переживания, которые для мозга то же, что и рецепторные; 3) улучшить реакцию в случае левостороннего пространственного игнорирования, что доказывает возможность воздействия на НМ через нарушение ритмов и, конечно, подтверждает фундаментальную значимость оных [1, стр. 155].

Объективную материю, формирующую нейронную материю (ЭММНМ  эмпирическая модель материи НМ), и все иные модели НМ следует рассматривать с различных уровней, которые объединяются благодаря электромагнитной активности.


Табл. 1 Уровни организации НМ [1, стр. 143]


Это разделение полезно для того, чтобы продемонстрировать, что НМ лишён всякой целостности. Каждый более детальный уровень, в свою очередь, обусловлен ещё более детальным. И так до бесконечности, поскольку существование неделимых частиц логически и эмпирически противоречиво. Электромагнитные поля объединяют все эти уровни, моделируя я-модель и модель мира. Исходя из того, что невозможно установить конкретные зоны путём стимуляции мозга, ответственные за комплексные переживания, эмоции и иные аспекты НМ, следует, что они распределены в нейросетях и обретают значение лишь в результате синхронизации, складываются из миллионов нейронов подобно пазлу.

Из этого достоверно следует, что электромагнитная синхронизация образует единое коммуникативное пространство сообщения между сетями и зонами мозга, регулируя отношения одной сети к другой и тем самым обеспечивая стабильность того или иного аспекта НМ в зависимости от конкретно взятого пучка нейронов. Если бы синхронизация была просто побочным продуктом активности нейронов, то при десинхронизации не выпадали бы соответствующие аспекты НМ, но всё как раз наоборот: стимуляция мозговых полей магнитной катушкой ТМС ведёт к изменению подавляемого/стимулируемого аспекта НМ, что свидетельствует в пользу их основополагающей роли в создании НМ: через ТМС-стимуляцию мы можем подавить любой аспект НМ  модель тела, если направим катушку в зоны S1 S2 и т. д. [1, стр. 158].

Назад Дальше