Отсутствие базовых навыков в работе с персональным компьютером.
Боязнь потерять свое рабочее место из-за автоматизации.
Желание оставаться в зоне комфорта: действовать по ранее созданным шаблонам, а не изучать новые дисциплины.
Боязнь потерять свою зарплату или проходящий через их руки денежный поток, часть которого они оставляют себе.
Страх испортить отношения с сотрудником, которого приходится заставлять повышать квалификацию для автоматизации его работы.
Рассмотрим все причины по порядку, но начнем с конца с повышения квалификации. Звучит странно, но многие люди все еще не умеют пользоваться электронной почтой и создавать текстовые документы. У них часто нет даже собственного электронного почтового ящика. Подобных сотрудников практически невозможно убедить в выгоде информатизации компании: он всегда писал на бумаге от руки и будет продолжать это делать. Таких специалистов нужно принудительно передавать в руки отдела повышения квалификации. А теперь представим, что подобного мнения придерживается не рядовой сотрудник, а топ-менеджер или собственник никакой автоматизации вообще не будет.
Многие сотрудники компаний ежедневно совершают механические действия, чтобы создать видимость бурной деятельности. А по сути все их задачи можно автоматизировать таким образом, что план на день будет выполнен программой за несколько секунд. При этом даже если рядом с подобным сотрудником сядет исполнительный директор и покажет, как сделать всю работу на неделю за «один клик», работник не согласится действовать по примеру руководителя, аргументируя это классическим: «Мне так привычнее!». В такой ситуации только два пути:
Вызвать «санитаров» из отдела повышения квалификации и поставить ультиматум: для продолжения работы в компании сотрудник обязан автоматизировать свою рутинную работу, в противном случае он будет уволен.
Завалить работника таким количеством ежедневных рутинных задач, чтобы он валился с ног от усталости и просто физически не успевал все сделать. А потом напомнить ему про программу, которая может автоматически выполнить большую часть его обязанностей за какие-то несколько секунд.
Разумеется, есть и другие способы убеждения все зависит от терпения руководителя, необходимости срочного исправления ситуации и степени желания осушить коллективное «болото». Но помните: автоматизация никогда не проходит безболезненно это аксиома.
Коллектив всегда будет против того, что машины могут отнять у него рутину, которую сотрудники называют «работой». И если доля бунтарей, желающих оставить все по-старому, будет критической, то в компании вполне может вспыхнуть нечто аналогичное английскому «восстанию луддитов». Вряд ли люди будут крушить кувалдами офисные компьютеры и серверы, но саботаж парализует любое развитие, а значит, компания начнет постепенно умирать.
Все перечисленные фобии объединяет одна мысль, которая рано или поздно приходит на ум многим нанятым сотрудникам: «Буду сидеть смирно и получать зарплату за механические действия, не работая головой и не надрываясь от своих же инициатив». Каждый собственник и топ-менеджер самостоятельно решает, будет ли он переводить подобных ленивцев в состояние активного действия, заставлять людей повышать квалификацию и требовать от них изучения новых дисциплин или же оставит все как есть, ведь «уже и так работает». Но бывает и наоборот, когда идея цифровизации уже давно бродит внутри коллектива, но сотрудники боятся рассказать об этом начальству.
Однажды на форуме Reddit[6] один аноним пожаловался на то, что его мучают угрызения совести из-за того, что год назад, когда во время пандемии его перевели на удаленную работу, он автоматизировал весь свой рабочий процесс и теперь тратит 10 минут в день вместо 8 часов на тот же объем работы, что и прежде. Его задача обрабатывать входящую электронную почту. Все остальное время он развлекается, смотрит сериалы, играет в видеоигры. При этом он получает одну из самых больших зарплат в стране, являясь сотрудником юридической фирмы. Конечно, благодаря автоматизации он работает крайне эффективно, обрабатывая каждый день тысячи входящих писем, ведь никто из коллег не смог бы сделать это быстрее. Но все-таки совесть терзает его за безделье.
Из этой истории стоит сделать вывод о том, что до сотрудников необходимо донести следующее: целью их работы является именно выполненное до конца дело, а не проступившие на лбу капли пота. Если неправильно сформулировать задачи и возможные методы их достижения, то вместо желания автоматизировать все возможные процессы, работяги начнут страдать, публикуя в социальных сетях истории о терзаниях своей совести.
Еще одним преимуществом тотальной цифровизации процессов в компании является то, что благодаря числовому выражению эффективности труда работников можно избавиться от «кумовства». По этому принципу работает компания Amazon, которая является крупнейшим мировым ретейлером. У этого гиганта процесс увольнения сотрудников настолько автоматизирован, что машина определяет кандидата самостоятельно, исходя из показателей его продуктивности[7]. Алгоритмы, основанные на машинном обучении, позволяют исключить человеческий фактор из принятия решения об увольнении. Неэффективный сотрудник будет сокращен, даже если его начальник родственник, покрывающий все его действия.
Подобное отношение к своим работникам можно назвать жестоким. Но если их несколько сотен тысяч, то автоматизация любого процесса приводит к заметной материальной выгоде. Особенно если необходимо нанять сотрудников на сезонную работу и при этом сохранить высокое качество услуг. Достаточно лишь собрать все возможные показатели и определить наименее эффективных работников. Так и поступили в Amazon в отношении доставки товаров клиентам во время пандемии COVID-19. Компания не справлялась с потоком заказов, которые требовалось доставить до двери, поэтому начала активно нанимать новых сотрудников. Для этого было создано мобильное приложение, с помощью которого любой владелец автомобиля мог стать курьером. При этом приложение собирало данные о качестве их работы, его интересовало:
Время, затраченное на доставку.
Уложился ли курьер в обещанное временное окно доставки.
Сфотографировал ли посылку у двери клиента.
Смог ли замаскировать посылку у двери, как просил клиент, чтобы ее не украли.
И еще много-много различной информации
Приложение было скачано более 4 миллионов раз. Через него собирались большие данные по десяткам различных параметров, по которым ежедневно выносились вердикты при увольнении курьеров. Сокращенным просто блокировали доступ в приложение и не выдавали новые заказы на доставку.
С одной стороны, это жестокий способ увольнения сотрудников из компании. С другой, когда на предприятии работает 4 миллиона человек, то это наиболее эффективный метод работы всего административного аппарата. При этом даже не нужно задействовать сотрудников отдела кадров ни для найма, ни для увольнения. А все управление подразделением доставки состоит из нескольких программистов, специалистов по данным и менеджера.
Техническое отделение
Техническое отделение это производственный цех на предприятии. Тут осуществляется вся работа.
Если компания предоставляет услуги или продукты, которые нельзя потрогать руками, к примеру, программное обеспечение, то весь рабочий процесс проходит в информационных системах, где без особых затрат можно создать систему учета выработок сотрудников. Но если предприятие выпускает материальные продукты, которые можно подержать в руках, то первое, чем должны озадачиться управленцы, это создание серийных номеров для выпускаемых единиц товара.
Маркировка каждой детали нужна на случай гарантийного обслуживания и для улучшения качества как отдельных деталей, так и составных продуктов. Деталям необходимо не только присваивать серийные номера, но и заносить дополнительные сведения в информационную базу предприятия, чтобы по каждому серийному номеру можно было восстановить любую информацию:
Дату и время производства.
Место производства, если цехов несколько.
Серийный номер станка, на котором была изготовлена деталь.
Серийный номер конечного изделия, в который вошла деталь.
Сотрудника, изготовившего деталь.
Температуру и влажность в цехе и на улице во время изготовления.
Напряжение в электрической сети, давление воздуха в системе пневматического инструмента.
Потребление сотрудником перловой каши столовой цеха в день производства
Это выглядит как несколько безумный сбор информации обо всем, даже с посягательством на частную жизнь сотрудника. Но взгляните на это с точки зрения доходов компании. Допустим, клиент прислал бракованную деталь на замену. По ее номеру можно определить всю историю продукта и обстоятельства его изготовления. То есть, благодаря собранным в процессе производства данным, по одной гайке можно сказать, с какого автомобиля она была снята. Можно даже отказать клиенту в гарантийном ремонте, потому что гайка не от его купленного автомобиля.
С другой стороны, можно оптимизировать производство и сократить издержки, предсказав заранее, какие именно детали будут бракованными. Для этого необходимо использовать все собранные данные по бракованной детали (не ограничиваясь списком выше) для машинного обучения. В процессе тренировки модели нужно указать, что при такой комбинации значений параметров появляется бракованная деталь. А когда машина обучится, предприятие получит систему предсказаний брака, которая с точностью, близкой к 100 %, будет определять бракованное изделие и не допускать его до продажи. Но для этого надо собирать все возможные большие данные.
Посмотрите на последний пункт в списке (про перловую кашу). Даже в нем есть логика. Допустим, сотрудник пришел в цех после обеда, на котором полакомился перловой кашей. А у него непереносимость глютена[8], о которой он даже не подозревает. В итоге, из-за аллергена следующую половину дня его когнитивные способности будут снижены. Он станет медленным, невнимательным, забывчивым. Его мышцы будут слабее, чем обычно. Пострадает мелкая моторика рук. Это может привести к браку, к финансовым потерям компании. Определить же степень влияния рациона сотрудника на вероятность брака может только машина. И сделает это она настолько точно, что собственник и топ-менеджер моментально заменят перловку на пюрешку в столовой. Потому что компании невыгодно терять деньги и репутацию из-за брака как результата собственного гастрономического творчества.
Остается еще вопрос этики: как собрать все необходимые данные о производстве и сотрудниках так, чтобы они этого не замечали, чтобы им было безразлично, ведется ли учет каждого их движения или нет. Единственный способ осуществить это сделать процесс полностью автоматическим, чтобы сотрудник не заносил данные в компьютер вручную и даже не писал цифры серийного номера на детали. Все это должна делать машина, и неважно, каким именно способом: выбивать цифры или выжигать лазером QR-код. Главное, чтобы все происходило автоматически.
Отделение квалификации и качества
Отделение квалификации и качества проверяет качество услуг и товаров, производимых компанией. Если оно низкое, то принимаются необходимые меры, к примеру, персонал отправляют на повышение квалификации. Указанное отделение непрерывно получает отзывы клиентов, собирает информацию об их впечатлениях от продукта или услуги. Затем на основе этих данных товары улучшаются, поступают на рынок и PDCA цикл Деминга (планирование-действие-проверка-корректировка) повторяется вновь.
В современных компаниях, которые давно провели цифровизацию, отзывы не собираются и не анализируются вручную, потому что это рутинная работа. Поручать ее человеку это непростительно дорогое удовольствие. Тем более что программа может обрабатывать миллионы отзывов в сутки, тогда как рядовой сотрудник только десятки или сотни. А если отклики не приходят на определенный почтовый адрес или не принимаются через форму жалоб на сайте производителя, то собирать их приходится по всему интернету. Что еще больше говорит о необходимости в программном анализе информации.
Рассмотрим интересный случай, который произошел с крупной южнокорейской компанией Samsung. В нашей стране она в первую очередь знаменита своими сотовыми телефонами и бытовой техникой. Однако в действительности эта компания намного больше, чем мы себе представляем, и она производит очень широкий ассортимент товаров, среди которых есть даже крупнотоннажные грузовые корабли. При таком разнообразии продукции сбор отзывов и их систематизация представляют собой крайне трудоемкий процесс, которым в основном занимаются машины. То есть программа просматривает в интернете все страницы всех социальных сетей, чтобы определить, появились ли новые сообщения с упоминанием продуктов бренда. Несмотря на то, что мониторинг происходит автоматически, процесс этот все же довольно медленный, да и компьютер иногда пропускает нужные отзывы, если в них отсутствуют «правильные» контрольные слова.
Недавно Samsung зарегистрировала неблагозвучный для русского уха бренд Gnusmas[9], название которого представляет собой перевернутое Samsung. Возможно, производитель не знал, что в нашей стране это слово стало довольно популярным и используется в негативном ключе, в том числе в качестве нарицательного для отзывов о неудачных продуктах рассматриваемой нами компании. А теперь представьте, что произойдет, если Samsung официально попросит всех владельцев ее устройств использовать слово Gnusmas в качестве ругательства, чтобы выражать недовольство продуктами компании на просторах интернета. Очевидно, что с наличием контрольного слова поиск и обработка отзывов, оставленных во всемирной паутине, будут занимать намного меньше времени. Благодаря чему отдел качества сможет быстрее получать обратную связь от пользователей, и данные станут точнее. Наличие такого слова-метки в интернет-публикациях бесценная находка для компании, позволяющая действительно улучшить выпускаемые ею продукты за счет анализа огромного количества реальных откликов.
К слову, обычно небольшие компании, у которых еще нет наработок в области искусственного интеллекта, используют сервисы «Google Alerts» или «Яндекс.Медиана» для обнаружения в интернете с помощью контрольных слов отзывов о своих товарах. Такие сервисы автоматически отправляют пользователю уведомление на почту, если в глобальной сети появляется заданное контрольное слово. То есть если у вашего товара достаточно уникальное название, можно настроить отслеживание прямо по нему и собирать обратную связь. Полученные отзывы необходимо классифицировать на положительные и отрицательные, определяя в каждом, какое преимущество или недостаток продукта озвучены как основные. В небольшой компании с этим может справиться один человек, но с ростом популярности продукта приходится создавать свой машинный интеллект для столь кропотливой и нудной работы. В любом случае без обработки и сбора больших данных по комментариям пользователей невозможно улучшить продукт и удовлетворить клиентов.