Попытаемся же и далее смело расшатывать консерватизм (инвариантность) сложившегося понимания оснований механики, с целью согласования ее понятий с практикой человеческой и общественной жизнедеятельности. В этом плане можно привести такой пример из практики общественного производства пример взаимодействия кузнечного молота и наковальни в процессе ковки какого-либо изделия. В данном примере имеется механическая система, в которую движитель молота (допустим электрический) передает потенциалы движения ему для ударных воздействий на предмет ковки. Эти потенциалы передаются изделию с преодолением его сопротивления (от наковальни) и изменением его формы, с ничтожными изменениями состояния наковальни благодаря её массе. При этом все тепло, от предварительно нагретого изделия и полученное от ударов молота рассеивается во внешнюю среду. То есть мощность движителя молота передаваемая в систему «молот-наковальня» за время совершения работы будет вызывать приращение общей мощности молекулярного движения молота, изделия и наковальни, но с одновременным рассеиванием ее как тепла в окружающую среду. То есть, чем интенсивнее будет ковка, тем меньше будет потеря тепла изделием и быстрее будет достигнута требуемая его форма, не потребуется тратить время и тепло отдельного нагревателя изделия (его тепловую мощность). Но это потребует большего потребления мощности от движителя, то есть от энергосистемы. Таким образом, имеет место оптимизационная задача. Измерение электрической мощности движителя в процессе совершения работы позволит определить суммарную мощность (кВт-час), полученную от энергосистемы, сопоставить ее с мощностью нагревателя изделия и оптимизировать процесс ковки (а отдельно и саму конструкцию ковочного комплекса) таким образом, чтобы минимизировать потребление электроэнергии (как говорится, а в действительности мощности от генератора) при допустимом (заданном) времени ковки. Этот пример показывает научно-практическое значение понятий мощности, механического потенциала и тепловой мощности, которые наиболее понятным образом связывают практические задачи оптимизации всех технологических и естественных процессов в обществе с теоретической механикой и прочими разделами науки (по сущности процессов), без «форм энергии» и их «превращений».
.Вспоминая и когнитивно сжимая великий исторический переход в физике от «сил» к «энергии» и ее «превращениям» с сохранением величины, связанный, кстати, с необходимостью перехода от векторов сил к скалярным величинам (с целью количественных измерений), он видится теперь «слабо адекватным» реальности (см. «живые силы» Лейбница и пр.) [5; 7]. Научно адекватным был бы, очевидно, первоначальный переход от «сил» к «потенциалу движения», к потенциалу и мощности действия. Но, в тот период устоялось уже понятие «количество движения», а вместо понятия мощность (которое появилось много позже) господствовало в мышлении понятие «живой силы», которое быстро перешло в понятие энергии, просто по предложению Т. Юнга назвать эту «живую силу» энергией. Соответственно, всем движущимся телам стали приписывать «обладание энергией», в то время как «обладание потенциалом действия», «мощностью» (как свойством, способностью совершать работу) было и остается в понятийном плане (когнитивно) адекватным реальности. Более того, оно соответствует, как теперь хорошо понятно, и математическому выражению работы и энергии интегралом мощности по времени. Кстати, уже в ту пору «появления энергии» в мышлении о физической реальности употреблялось, иногда, слово «мощь» в количественной оценке движения (оценке массы и скорости ее движения). Современный справочник по физике рассматривает, кстати, только «мощность силы» (?), в то время как источником «силы» всегда является ее «носитель». То есть понятие мощности научно правильнее связывать не с «силой», а с конкретным действующим объектом (телом) или процессом (тепловым, полевым). Представленные соображения вызывают также вопрос о научной адекватности в механике термина «импульс». Понятно, что он появился на основе анализа ударных взаимодействий и теплового движения, однако научно правильнее, по всей видимости, говорить о действии (с определенной мощностью) потенциала движения, о сохранении общего потенциала в замкнутой системе, а не «импульса».
Хорошими примерами, убеждающими в использовании понятия мощность в качестве общенаучного, являются электрические и электромагнитные процессы, в которых понятие мощности используется изначально. Например, рабочие процессы преобразования электрического тока в тепло или механическое движение (через электромагнитную мощность), работа трансформатора с передачей мощности и прочие процессы. То есть видится научно правильным (адекватным реальности) говорить о видах действий и их мощности, а не о «формах энергии».
Теперь видно, что понятие мощности, будучи связанное со всевозможными движителями, хорошо согласуется (понятным физическим образом) как с естественной механикой, в которой сохраняется именно движение и его основы, потенциалы действия, так и с практикой общественной жизнедеятельности, с общественным производством. Но исторический энергетизм в современной Механике, в учебно-просветительской литературе сохраняет постоянно возникающий в анализе взаимодействий вопрос почему следует считать (по установленному закону сохранения), что тело передало «энергию» другому телу, если то получило в действительности потенциал движения как свойство совершать внешнюю работу, свойство «движителя», и сохраняет его до следующего взаимодействия. Поэтому в плане просветительства надо рекомендовать всем изучение истории возникновения и развития понятий, определивших законы «сохранения сил» («живых и косных») и «сохранения энергии» [14]. Из этой истории видно, что в действительности ученые выясняли закон сохранения интегрального действия. Выясняли путем измерений работы скрытого теплового или иного (электрического) движения, обладающего мощностью как свойством совершать работу и переходящего от одного тела к другому (от одной механической системы к другой). Надо обратить внимание и на то, что все современные искусственные движители (двигатели, моторы) характеризуются по своему назначению величиной мощности. Эта характеристика имеет место и для генераторов электроэнергии, как принято говорить, а в действительности, из физики электрического тока и его действия посредством преобразования в механическое действие мы видим, что в действительности генерируется мощность электрического тока, то есть имеет место обратное преобразование мощности механического действия в мощность электрического действия.
Таким образом, рассмотренные выше понятия, являющиеся вполне обоснованными и научно целесообразными, позволяют оставить, наконец, «формы энергии» и «превращения» их в историческом прошлом, и рассматривать понятия наиболее адекватные реальности, а главное связывающие естественные процессы физической реальности с общественными процессами, со всем множеством преобразующих процессов называемых в совокупности «общественным производством». Они распространяют и легко трансформируют наши представления о сущности механических взаимодействий во все прочие сферы движения, не только в биофизические (организменные), но и в социальные, социотехнические. При этом, изучая историю использования понятий сил, сохранения сил и энергии, становится хорошо видно, что сохраняется в физической реальности (в замкнутой системе) общий потенциал движения, действия и мощности, а энергия «сохраняется» не как физическая субстанция (в «различных формах»), а «сохраняется» как интегральная (математическая) величина в «энергетическом» описании замкнутой системы, как возможная полная работа её на другие системы. Интегральное действие того или иного вида, той или иной формы воспринимается, конечно, человеком количественно теми или иными органами (системами), поэтому, очевидно, и возникает иллюзия реального существования энергии, невидимой человеком в ее сущности. То есть надо ещё раз отметить, что исторический переход в механике от «сохранения сил» сразу же к «сохранению энергии» видится теперь, можно сказать, основой последующих в истории заблуждений, обусловленных, кроме прочего, и многозначностью слова энергия. В тот период очень быстро возникло понимание её именно в качестве какой-то скрытой ранее субстанции. Оно сохраняется, к сожалению и удивлению (при современном общенаучном развитии), до сих пор.
Каким же образом определить её все-таки обобщенно, с понятийной пользой для общества, для повышения, прежде всего, его энергетической организованности (уменьшения энтропии)? Этот вопрос является, на взгляд автора, актуальным ввиду большой энерговооруженности современного общества, актуальным для всего научно-философского сообщества. В этом плане можно предложить пока сделанные выше и следующие краткие соображения.
Во-первых, понятие энергии в обществе должно основываться на реальной его механике, то есть на реальных процессах механических преобразований во всеобщем созидающем, сохраняющем и развивающем движении.
Во-вторых, оно должно быть хорошо понятным через практику жизни каждого человека, через общественную практику и её историю, то есть общественно целесообразным для общего образования молодых поколений.
И в-третьих, должно обеспечивать наиболее эффективный и производительный во времени и относительно затрат ресурсов целенаправленный труд, как всеобщее комплексное движение в формах деятельности по скорейшему достижению высших целей общества и надежному сохранению достигнутых параметров состояния относительно окружающего мира.
Такое определение может быть сделано, думается, только на основе глубокого и широкого понимания мощности, отражающей количественные моменты всех видов (форм) движения и взаимодействий в нашем мире, и следовательно понимания «места энергии» во всем естествознании. Переход к научному анализу движений (как процессов изменений) и взаимодействий через общенаучные понятия потенциала, потенциала движения, действия и мощности уже не составляет, в принципе, большого труда, поскольку необходимые научно-практические основы уже имеются. Думается, отсутствие мощности в Механике (кроме краткого рассмотрения «мощности силы» в справочнике) и во многих других разделах Физики, в естествознании обусловлено господством «сил» и энергии в формировании и становлении Механики, и ее научно-политической консервацией, господством «марксистско-ленинской диалектики» в СССР.
Подкрепим предварительный вывод дополнительными соображениями. Вспоминаются высказывания Аристотеля о том, что любая вещь имеет определенную потенцию. Теперь надо добавить прежде всего, потенцию действия на другие (вещи, объекты, окружающие среды), величина которого отражается нами понятиями потенциала и мощности (того или иного вида), а по результату действий и понятиями работы, энергии. Слово «энергия», после введения его Т. Юнгом, стало использоваться для обозначения общей меры механического действия, стало всеобщим термином и понятием Механики [15, c. 221]: «Наряду с количеством движения Юнг пользуется понятием живой силы и именует эту величину энергией движущегося тела. Он говорит, что действие движущегося тела на преодолеваемые им препятствия пропорционально квадрату скорости».
Но величину потенции объекта, как свойства воздействовать на другие, рационально отражать в науке все же не энергией, а общенаучным термином потенциал (действия), что уже реализовано отчасти в некоторых разделах Физики, но не произошло в Механике, по причине особого исторического развития её понятий, начиная от чувственного слова-термина «сила» и научно необдуманного добавления к силам и закону их сохранения (Г. Гельмгольц) энергии (с подачи Т. Юнга), вместо, можно сказать, научно адекватного и логичного внедрения понятий: потенциала, движения и действия (с «уходом от действия сил»).
Б. Г. Кузнецов отмечает также (с. 222):
«На всем протяжении развития идеи живой силы и ее сохранения, от Лейбница до д'Аламбера, продолжалась дискуссия о том, какая величина живая сила mv2 или картезианская мера mv должна считаться мерой движения. Д'Аламбер высказал некоторые соображения о применимости обеих мер. Но вопрос не был решен. Действительное соотношение между сохранением mv и сохранением mv2 в последнем счете связано с соотношением свойств пространства, с одной стороны, и свойств времени с другой» (? из истории видно, что поскольку mv это векторная величина, то был осуществлен переход к скалярной величине mv2 (Лейбниц), а затем к интегральной mv2/2, А.В.).
Таким образом, можно сделать такой вывод: понятия потенциал действия и мощность, будучи научно адекватными реальности, ограничивают употребление слова-термина энергия (так же научно адекватным образом, по этимологии) местом общей (математической) меры интегральных действий, отражаемых понятием работы и известными математическими выражениями ее для разных видов действий. Отсюда следует, что «энергию» вообще нельзя приписывать телу («тело обладает»). То есть можно говорить лишь о возможной энергии действия тела (в единицах общей меры). Таким образом, можно сделать и такой вывод: вместе с заменой «живых сил» энергией (с подачи Т. Юнга) возникли и до сих пор сохраняются вопросы об адекватности и научности «форм энергии», их «переходов» в другие «формы», вопрос «потенциальной энергии» и главный вопрос о самом «сохранении энергии». Что же сохраняется в действительности, если энергия выражается интегральной математической величиной так называемой работы, в единицах общей меры? Адекватными реальности, несомненно, являются «виды» и «потенциалы» действий, их «сохранение» основанное на фундаментальном законе сохранения массы, стационарности ее движения в форме вещественных тел, и на других фундаментальных законах. Надо заметить, что понятие потенциала пришло в анализ механики позже, когда «силы» и «формы энергии» прочно укрепились в ней и соответственно в мышлении исследователей.
В этом плане полезно привести следующие фрагменты из указанного выше исследования Б. Г. Кузнецова. Он отмечает, например (с. 246, 247):
«Гельмгольц, мыслитель, стремившийся свести физические процессы к их механическому субстрату, понимавший принцип наименьшего действия в чисто механическом смысле, в 1886 г. систематически применял этот принцип к проблемам механики, термодинамики и электродинамики. Он ввел понятие кинетического потенциала, способствовавшее обобщению физической интерпретации принципа. Кинетический потенциал это величина, из которой можно получить действие путем интегрирования по времени. Эта
величина фигурировала в различных областях физики без какой-либо механической интерпретации. В трудах Гельмгольца кинетический потенциал трактовался не как производная величина разность между кинетической и потенциальной энергией, а как исходная величина. Это было важным шагом для перехода к немеханическому пониманию принципа наименьшего действия, так как кинетический потенциал может отличаться от механического понятия разности Т-U. Вне механики, где различие между кинетической и потенциальной энергией теряет непосредственный смысл, кинетический потенциал нельзя получить однозначным образом при заданной энергии. Поэтому самостоятельный характер понятия кинетического потенциала позволяет сделать принцип наименьшего действия универсальным принципом физики обратимых процессов, не сводя ее законы к законам механики, иными словами, позволяет трактовать указанный принцип уже не как механический» (подч. А.В.). То есть кинетический потенциал можно понимать как потенциал возможного действия и относить его к свободному движению тела, а потенциал действия к взаимодействию тел, к процессу переноса потенциала, к совершению работы.