Действительно, исследователи всего мира воспользовались этим простым программируемым инструментом редактирования генов и сделали новые открытия, которые попали на страницы ведущих научных и медицинских журналов. Профессор права Стэнфордского университета Хэнк Грили проводит удачную аналогию: «Модель T[63] была дешевой и надежной, и вскоре уже у всех появилась машина, и мир изменился. CRISPR сделал редактирование генов недорогим, простым и доступным Думаю, это также изменит мир, говорит он. И это меня поражает»[64].
Между двумя футбольными клубами Буэнос-Айреса «Ривер Плейтом» и «Бока Хуниорсом» идет, как известно, вечное непримиримое соперничество. Однако существует противоборство, которое формировало жизнь на Земле с самого начала, и оно продолжается по сей день. Основная гонка вооружений на планете происходит между двумя непримиримыми врагами, ядерными сверхдержавами микробиологического мира бактериями и вирусами (или бактериофагами), стремящимися уничтожить друг друга. Эта война длится вечность, по крайней мере не меньше миллиарда лет.
Еще до пандемии COVID-19 мы знали, что вирусы это невидимая опасность, предвестники болезней и смертей. В своем известном высказывании лауреат Нобелевской премии Джошуа Ледерберг утверждал, что «самая серьезная угроза дальнейшему господству человека на планете это вирусы». Помимо социального дистанцирования и некоторого естественного иммунитета, у человечества в арсенале мер противодействия имеются также вакцинация и множество специализированных или перепрофилированных методов лечения, а кроме того препаратов. Угроза никогда не исчезнет, поскольку вирусы способны мутировать, развиваться, захватывать генетический материал своих хозяев и постоянно перерождаться.
Бактерии хорошо нас понимают. Они постоянно сталкиваются с атаками со стороны бактериофагов вирусов, которые заражают исключительно бактерии. На планете Земля существует непостижимое количество бактериофагов (10 нониллионов (10
-10
Окруженные потенциальными фаговыми захватчиками, бактерии развили множество защитных систем, чтобы отслеживать и уничтожать эту угрозу. Когда я изучал биохимию в 1980-х гг., нам рассказывали, что бактерии обладают целой армией нуклеаз высокоактивных ферментов, которые распознают и атакуют определенные мотивы чужеродной ДНК. (Последовательности ДНК самих бактерий защищены от этих нуклеаз химическими метками, подобно тому как розетки закрыты от детей специальными крышками). Ученые использовали эти ферменты ограничения как средство для разрезания, обмена или «сшивания» (лигирования) фрагментов ДНК, например помещая гены человека в ДНК бактерии, что положило начало развитию отрасли биотехнологии. Но, как мы убедимся далее, теперь мы знаем, что бактерии обладают еще и другой иммунной системой. CRISPR это небольшой участок бактериального генома, который содержит фрагменты захваченного вирусного генома для дальнейшего использования, причем каждый такой фрагмент (или спейсер) отделен от другого одинаковыми повторяющимися палиндромными последовательностями ДНК. Представьте себе это как картотеку ФБР, в которой хранятся данные о разыскиваемых преступниках.
CRISPR это больше, чем просто хранилище вирусных злодеяний. Совсем рядом находится арсенал мощной системы противоракетной обороны «земля воздух». Когда клетка обнаруживает вторгшийся вирус, первым делом активируется система CRISPR, производящая копии РНК заархивированных вирусных последовательностей. Эта цепочка РНК затем разрезается на отдельные фрагменты, каждый из которых соответствует тому или иному вирусу и служит в качестве наброска внешности возможного преступника, сделанного полицейским художником. Сама по себе РНК не может причинить никакого вреда, поэтому она превращается в оружие путем связывания с ферментом, расщепляющим ДНК, называемым Cas (от англ. CRISPR-associated sequence «последовательность, связанная с CRISPR»), образуя рибонуклеопротеиновый комплекс, оснащенный сигналом GPS и готовый к бою.
В микроскопической вселенной существует полдюжины разновидностей или типов систем CRISPR, которые делятся на два класса в зависимости от их строения и свойств[68]. Одна из простейших структур тип II содержит фермент Cas9. Эта нуклеаза, подобно кусачкам для проводов, добивается полноценного разрыва обеих цепей ДНК, но делает это избирательно. Она захватывает крРНК и держит ее как фотоснимок преступника и ищет совпадения в вирусной ДНК. При обнаружении необходимого участка Cas9 и крРНК «защелкиваются» на ДНК и разрезают ее, нейтрализуя угрозу. «Cas9 поистине творит чудеса, объясняет Урнов. Когда она охраняет внутриклеточное пространство от вторжений, она буквально носит с собой копию объявления о разыскиваемом преступнике, спрашивая каждого: "Извините, ведь вы точная копия разыскиваемого преступника, не правда ли? Тогда я вас порежу"»[69].
Фаги и каскад реакций CRISPR. (А) Замечен в момент совершения преступления: фаги садятся на поверхность клетки E. coli (кишечной палочки), чтобы совершить нападение. (Б) CRISPR-Cas-иммунитет. 1. Бактерия захватывает фрагменты вирусной ДНК и включает эти фрагменты как спейсеры в расширяющийся блок последовательностей CRISPR. 2. Для борьбы с фаговой инфекцией массив CRISPR транскрибируется в РНК, которая называется (пре-крРНК), а затем преобразуется в зрелые крРНК. 3. На стадии противодействия крРНК и Cas белок(и) образуют комплекс, который разрушает распознанные фаговые последовательности. Некоторые системы CRISPR (класс 1) содержат несколько белков Cas (как показано на рисунке), в то время как более простой системе класса 2 требуется одна нуклеаза Cas9 (по материалам пункта 15 примечаний)
Описанные системы CRISPR. Существует несколько разновидностей систем CRISPR, которые делятся на два класса класс 1 и класс 2. В классе 1 расщепление ДНК осуществляется комплексом белков, иногда называемых каскадом от слова Cas. В классе 2 системы CRISPR содержат одну нуклеазу Cas, такую как Cas9, Cas12 или Cas13. (Подробнее см. пункт 15 примечаний.)
Марраффини показывает, как две бактериальные системы защиты дополняют друг друга. Рестриктазы создают первый барьер защиты от вирусной угрозы, дробя вирусную ДНК на части, которые могут быть включены в массив CRISPR. Однако, если фаги, когда-либо эволюционировавшие, уклоняются от первой линии защиты, срабатывает иммунизация CRISPR. «Это аналогично вакцинации, говорит Марраффини. Когда ДНК фагов мертва, CRISPR может собрать спейсеры для формирования иммунитета у бактерии». Лишь немногие инфицированные вирусом бактерии действительно приобретают спейсеры примерно 1 на 1 млн, но это дает одной клетке возможность устранить вирусную угрозу и восстановить популяцию[70].
В документальном фильме Адама Болта «Природа человека» (Human Nature, 2019) мы знакомимся с Дэвидом Санчесом, очаровательным мальчиком, страдающим от серповидноклеточной анемии. Узнав о возможностях CRISPR в лечении его болезни, он проницательно спрашивает: «Как эта штука работает и откуда она знает, как воздействовать на нужный ген, а не на тот, что отвечает за рост волос?»
Гениальность революции CRISPR заключалась в том, чтобы привязать Cas9 не к вирусной РНК, как в природе, а к синтетически разработанной РНК, запрограммированной исследователями, которая позволяет им воздействовать практически на любую последовательность ДНК любого гена любого организма. В результате у нас в руках оказался бактериальный фермент, существующий миллиард лет, и мы перепрофилировали его в молекулярный скальпель точной генной хирургии XXI в. Независимо от того, чей геном мы хотим отредактировать: хомяка или человека, комара или мыши, красной смородины или красного дерева, процесс остается по сути одним и тем же. Это связано с тем, что все организмы в природе используют один и тот же универсальный код ДНК, состоящий из одного и того же четырехбуквенного алфавита.
В своем естественном состоянии Cas9 не интересуется ДНК, в основном случайно сталкиваясь и отскакивая от нее. Но как только Cas9, имеющая форму ладони, захватывает направляющую РНК, точная реконфигурация структуры белка заставляет ее взаимодействовать с ДНК в поисках подходящей мишени. По словам Блейка Виденхефта, профессора Университета штата Монтана, белковые комплексы Cas «патрулируют все внутриклеточное пространство, находят чужеродную [вирусную] ДНК, связываются с ней и приговаривают ее к уничтожению в считаные минуты это довольно впечатляющий процесс»[71].
Поиск и связывание с целевой последовательностью происходят в два этапа. Прежде всего Cas9 ищет короткий мотив ДНК, называемый последовательностью PAM[72], маяк, который дает ферменту сигнал для кратковременного связывания с ДНК, и взаимодействует с ним. «Это мимолетное взаимодействие приводит к искривлению ДНК», объясняет Виденхефт. Изгибая ДНК, Cas9 расцепляет нити двойной спирали, чтобы направляющая РНК могла проскользнуть в образовавшуюся щель (создавая так называемую R-петлю)[73]. Направляющая РНК быстро сверяет последовательность с текстом целевой ДНК. Если будет найдено идеальное совпадение среди всех двадцати оснований (букв текста), то ДНК-последовательность будет уничтожена. Cas9 рассекает[74] обе нити ДНК так же ровно, как кухонный нож, создавая двухцепочечный разрыв (DSB, double-strand break) всего в нескольких основаниях от последовательности PAM[75].
Этот удивительный процесс был потрясающе снят на видео исследователями Токийского университета Хироси Нисимасу и Осаму Нуреки в 2017 г. Используя метод, называемый высокоскоростной атомно-силовой микроскопией, они смогли увеличить изображение в тот самый момент, когда Cas9 захватывала молекулу ДНК. В фильме Cas9 выглядит как позолоченный камень, когда она останавливается на несколько секунд на нити ДНК, прежде чем разрубить ее пополам[76]. После того как Нисимасу выложил это видео в своем аккаунте Twitter, оно стало вирусным и было показано по японскому телевидению.
Однако сориентировать Cas9, чтобы она искала конкретную уникальную последовательность в геноме человека, это в миллионы раз сложнее, чем разрезать вирусную ДНК. Когда комплекс Cas9 входит в чужеродное пространство клеточного ядра, она сталкивается с лабиринтом ДНК двадцатью тремя парами хромосом, шестью миллиардами букв ДНК (сравним со стандартным геномом фага, состоящим всего из нескольких тысяч оснований). Попадая в ядро, каждая молекула Cas9 обыскивает плотно упакованные спирали ДНК, чтобы найти последовательности PAM, которые встречаются в среднем один раз за каждый полный оборот двойной спирали на 360 градусов, то есть на 10 нуклеотидов. В целом фермент должен «опросить» 300400 млн оснований, чтобы определить точную мишень для направляющей РНК, которая сама состоит почти из 20 нуклеотидов.
Йохан Эльф, биофизик из Уппсальского университета в Швеции, подсчитал, что Cas9 обычно требуется около шести часов для обнаружения каждой последовательности PAM в бактериальном геноме с остановками на двадцать миллисекунд на каждом предполагаемом участке, чтобы заглянуть в двойную спираль и проверить, действительно ли он нашел правильную мишень[77]. Но упаковка ДНК в ядре эукариотической клетки намного сложнее, чем у бактерий. Во время лекций, проводимых для студентов в Эдинбургском университете, Эндрю Вуд показывает схему строения бактериальной клетки рядом с извилистым петляющим волокном ДНК млекопитающих. «Cas9 не создана для того, чтобы работать в той среде, в которую мы сейчас ее поместили, говорит он. Поразительно, что она способна рассмотреть сотни миллионов нуклеотидов за считаные часы»[78].
После того как Cas9 разрезал ДНК, репаративные ферменты ДНК клетки «зашивают» разрыв. Эксперты удивляются тому, как успешно это работает[79]. Cas9 превосходит даже ранее разработанные технологии редактирования генов ZFN и TALEN[80]. «Они были созданы, чтобы работать с эукариотической ДНК, но тем не менее, по всей видимости, Cas9 превосходит их», говорит Вуд.
Давайте сделаем паузу и отметим решающую роль, которую играет в этом процессе последовательность PAM: поиск коротких фрагментов PAM вместо распаковки и проверки практически всего генома значительно упрощает задачу для Cas9 по фиксации целевой последовательности. Наличие PAM также объясняет то, что Cas9 не разрезает случайным образом повторы в последовательности CRISPR бактериальной ДНК. Это связано с тем, что, когда последовательности ДНК изначально добавляются к участку CRISPR в геноме бактерий, последовательности PAM отсекаются. Генные инженеры не хотят ограничиваться природным набором последовательностей PAM, поэтому модифицируют исходные ферменты Cas9 и Cas других видов бактерий, чтобы расширить их предпочтения в распознавании короткой последовательности PAM.
Если у бактерий настолько эффективна система безопасности, было бы резонно задаться вопросом: почему вирусы не вымерли? Вирусы незаметно развили множество обходных механизмов группу белков, которые способны нейтрализовать нуклеазы Cas, известные как белки анти-CRISPR. Вирусы и бактерии подобны хищникам и их жертвам, вовлеченным в бесконечную борьбу, которая продолжается сотни миллионов лет[81]. CRISPR обнаружен в 46 % бактериальных геномов и почти во всех геномах архей, но, что удивительно, совсем не встречается в геномах высших организмов. Хотя на сегодняшний день Cas9 чаще всего используется совместно с CRISPR, являясь предметом ожесточенных патентных споров, о которых я расскажу позже, этот фермент представляет собой лишь каплю в море разнообразных систем CRISPR, встречающихся в природе. Ученые прикладывают массу усилий, чтобы изучить биологическое разнообразие на Земле, открыть новые белки семейства Cas с новыми функциями и расширить набор инструментов CRISPR[82].
После того как исследователь определил последовательность гена, на которую он хочет воздействовать, он может перейти на любое количество веб-сайтов, ввести желаемый генетический текст и заказать индивидуально подобранную короткую последовательность направляющей РНК. Если CRISPR это молекулярная система работы с текстами, то направляющая РНК действует как функция CTRL + F, выявляющая интересующие последовательности генов. Работа Cas9 подобна нажатию клавиш CTRL + X. Однако редактирование генома это не просто наведение курсора для выделения и удаления опечатки. Речь идет о том, чтобы решить, что будет дальше и как этим управлять, как исправить опечатку.
Разрезание ДНК при помощи CRISPR. 1. Сканирование: нуклеаза Cas9 связывается с направляющей РНК, образуя рибонуклеопротеидный комплекс. Направляющая состоит из крРНК и трансактивирующей крРНК. Комплекс Cas9 сканирует ДНК в поисках последовательности PAM, которая служит первичным сигналом для проверки совпадения последовательностей. 2. Сцепление: Cas9 связывается с ДНК и расщепляет двойную спираль, позволяя крРНК комплементарно (взаимодополняюще) присоединиться к одной нити ДНК. 3. Разрезание: если ДНК и РНК полностью совпадают, Cas9 претерпевает конформационное изменение, в результате чего обе нити ДНК разрезаются в одном и том же месте. (По материалам пункта 23 примечаний.)
Клетки обладают множеством молекулярных механизмов восстановления разрывов и других мутаций в ДНК. Если бы их не было, нас бы не было в живых. Два наиболее известных механизма называются негомологичным соединением концов (NHEJ) и гомологически направленной репарацией (HDR). NHEJ небрежно сшивает вместе разорванные концы ДНК, что часто приводит к небольшим вставкам или делециям генетического текста в месте восстановления. Это идеально подходит для исследователей, использующих CRISPR для преднамеренного нарушения функции гена путем его нарушения с помощью добавления случайных вставок и делеций. Другой механизм, HDR, при наличии подходящей матрицы производит надежное восстановление. В нормальных условиях матрицей является соответствующий ген на сестринской хромосоме. Прелесть редактирования генома при помощи CRISPR заключается в том, что исследователь может предоставить подходящую матрицу, содержащую желаемую последовательность для восстановления разрыва, вызванного Cas9, что приводит к нужному изменению в определенном месте молекулы ДНК[83][84].