Гекконы Австралии и Океании - Крымов Николай 8 стр.





Лампа Osram ULTRA-VITALUX 300 Watt E27


Так вот, в летний период в дневное время при включенной лампе гекконы принимали ультрафиолетовые ванны периодически то поднимаясь, то опускаясь в листву мирта обыкновенного (Myrtus communis). При наступлении зимы температура в террариуме понизилась до +10+12 °С, и лампа стала для гекконов источником не ультрафиолетового излучения, а теплового. В результате длитель ного нахождения под лампой гекконы получили ультрафиолетовые ожоги. Подобные исследования по поведенческой терморегуляции с разными источниками изучения проведены с мадагаскарской игуаной (Oplurus cuvieri). Она отдавала предпочтение более ярким и более горячим источникам излучения, но при этом баскинг осуществлялся только под лампами накаливания (Dickinson, Fa, 1997). Можно сделать вывод инстинктивно рептилий привлекают яркие и теплые источники, а ультрафиолетовое излучение предпочитается только при оптимальной температуре в террариуме.

Все виды рептилий имеют поведенческие особенности для оптимизации воздействия на них ультрафиолетовых лучей. Как правило, термобиологическое поведение сводит к минимуму риск перегрева и повреждения ультрафиолетом их кожи. Основой индивидуальных адаптаций рептилий являются не физиологические механизмы, хотя и они вносят вклад в защитные функции организма, а поведенческие аспекты в пространственно-временной структуре суточной и сезонной активности (Черлин, 2016). В пустынях, например, дневные виды рептилий греются на солнце либо в утренние часы, либо в вечерние. К тому же, у всех пустынных видов очень устойчивый к ультрафиолетовому излучению наружный слой эпидермиса, это касается и гелеофильных видов тропического и умеренного климата Новой Зеландии.

Гарри Фергюсоном с группой коллег на юге США и Ямайке провели исследования с более 15 видами ящериц и змей в различных экологических средах. Их результатом стало выделение четырех зон ультрафиолетового излучения, впоследствии названными зонами Фергюсона (Ferguson et al., 2010) (таблица 5).

Эксперименты проводились в дневное время в сезон размножения при максимальной активности рептилий, чтобы понять закономерности получения ультрафиолетового излучения дневными видами рептилий в зонах с различной солнечной активностью. У двух видов Sceloporus spp., изученных более детально, наблюдалось значительное изменение экспозиции на солнца в течение дня и в различные периоды жизни. Авторами представлены рекомендации по воздействию на рептилий, содержащихся в неволе, ламп, излучающих UVB.

Таким образом, температура окружающей среды, температура тела, а также фоторегуляция содержания витамина D3 в тканях регулируются самими рептилиями, которые сами определяют интенсивность воздействия на них ультрафиолетового излучения в естественных условиях.

Подобное разделение по зонам различной мощности воздействия ультрафиолетового излучения в пределах ограниченной территории террариума не совсем понятно. Можно, конечно, предложить ящерице различные уровни в террариуме относительно источника ультрафиолета, но нельзя препятствовать ее передвижению в вертикальной плоскости и в ограниченном объемом террариуме, выбор остается всегда за ней.





Тем не менее, зоны Фергюсона это результат исследований, дающий нам представление о том, как и сколько ультрафиолетового излучения получают различные виды рептилий в природе, как регулируют этот процесс, определяя, таким образом, рамки содержания рептилий в неволе. На сегодняшний день Британской и Ирландской ассоциацией зоопарков и аквариумов (BIAZA) и рабочей группой рептилий и амфибий (RAWG) определены зоны Фергюсона для 254 видов рептилий.

Рептилии действительно регулируют воздействие ультрафиолета в зависимости от концентрации витамина D3 в организме (Ferguson et al., 2003). Например, пантеровый хамелеон (Furcifer pardalis) при низком содержании в организме кальциферола активнее реагирует на ультрафиолетовое излучение, то есть больше времени проводит под лампами (Jones et al., 1996). При этом высокий уровень витамина D3 сокращает продолжительность жизни самок и негативно влияет на репродуктивность хамелеонов и развитие эмбрионов (Ferguson et al., 1996). У комодского варана (Varanus komodoensis) концентрация в плазме крови (гидроксивитамина) D3 увеличилась в 860 раз, когда животное, содержащееся в закрытом вольере (без ламп UVB), разместили в открытый вольер на солнце (Gillespie et al., 2000). Те же самые драконы Комодо, подвергающиеся прямому солнечному ультрафиолетовому излучению в течение 150 дней в году, могут поддерживать стабильный уровень в организме витамина D3 в течение всего остального времени года (Gyimesi, Burns, 2002). В то же время продолжительное пероральное введение витамина в объеме 450 МЕ/кг молодым варанам не дал результата по концентрации гидроксивитамина D3, она не увеличилась (Nijboer et al., 2007).

Ультрафиолетовое излучение оказывает влияние и на социальное поведение рептилий. Воздействие лучей UVB на самцов пустынной игуаны (Dipsosaurus dorsalis) повышает их активность в виде увеличения количества кивков головы и агрессивность к сопернику (Moehn, 1974). А спектроскопический анализ секреции бедренных пор пустынной игуаны (Dipsosaurus dorsalis) показал, что она активно поглощает длинноволновое ультрафиолетовое излучение, столь необходимое для выработки феромонов и активизации социального взаимодействия между особями (Alberts, 1989).

Ультрафиолетовое излучение считается необходимым условием полноценного содержания рептилий в неволе. Однако, несмотря на его воздействие, у некоторых видов рептилий все же возникает метаболическая болезнь костей (Dickinson, 1997). Дефицит витамина D3 приводит к комплексу заболеваний в совокупности с метаболической болезнью костей. Например, критически низкий уровень витамина D3 у самки имеет последствия в виде гибели развитых эмбрионов в яйце. У взрослых особей, как правило, клинические симптомы появляются уже после значительных негативных изменений костей с одновременным нарушением работы функций органов. Все это относится к дневным и сумеречным видам, так как у ночных видов признаки дефицита витамина D3 встречается крайне редко. Кроме того, необходимо знать, что у многих ламп уровень ультрафиолетового излучения в первые 100 часов работы намного выше, что потенциально опасно, так как более интенсивное излучение UVB может вызвать серьезные проблемы, например, эпидермальный некроз или кератоконъюнктивит (Gardiner et al., 2009), особенно это касается альбиносов или частичных альбиносов. Необходимы новые исследования в этой области.

Мировой рынок террариумистики развивается все активнее, и все сильнее повышается интерес к новым разработкам производителей. Поэтому так необходимы исследования по соответствию технических характеристик различных приборов, которые используются для поддержания нужных условий в террариумах, эколого-физиологическим потребностям животных. Сегодня объем советов «специалистов» превышает спрос, особенно в Интернете, и чаще всего они совершенно неадекватны. Для предлагаемых в содержании в неволе рептилий ламп часто определяющее значение имеют красивая упаковка и низкая цена, сопровождающихся какой-нибудь старой фотографией с явным рахитом питомца. Никто не задумывается, что неконтролируемое производство подобных ламп и нарушение технологий могут впоследствии генерировать губительные для рептилий UVC или аномально коротковолновые UVB. В этом случае более дешевые лампы стоят жизни рептилии. Известный производитель ультрафиолетовых ламп Exo Terra Repti Glo часто дает общие характеристики ламп, периодически меняя их показатели, а на настоящий момент вообще нет точных данных по их излучению. Если у ламп Exo Terra Repti-Glo с маркировкой лампы 2,0 отсутствует необходимый спектр, с 5,0 показатели допустимые, то 10,0 ультрафиолетовое излучение приближается к проблемным коротким волнам. Здесь уже каждый самостоятельно решает, использовать или нет такие лампы, либо нужно иметь возможности постоянного контроля их излучения с помощью спектрометра. Многочисленные «эксперименты» зоомагазинов, показывающие уровень излучения лампами UVB не раскрывают истинной информации, а преследуют в первую очередь цель роста продаж. Все «исследования», которые проводится на любительском уровне, с замерами ультрафиолетового излучения бытовыми приборами типа радиометров китайских производителей как минимум некорректны. Мы не знаем технических характеристик, используемых для этих целей приборов, не видим, какие лучи замеряются, какая температура помещения, где проводятся испытания, марка лампы и возможный срок ее эксплуатации, то есть, как долго использовался данный излучатель. Именно в первые часы излучающая UVB-лампа работает в максимальном режиме, снижая уровень ультрафиолетового излучения до 23% в короткий промежуток времени (Baines et al., 2016).

Для определения УФИ различными лампами требуются спектрометры. На сегодня самые востребованные любителями Solarmeter 6.2 или Solarmeter 6.5 (Ferguson et al., 2010; Diegel, 2011; Franceset al., 2017), которые определяют длину волны UVB и UVA, не менее значимого для здоровья рептилий. К сожалению, нужно констатировать, что эти спектрометры имеют погрешность до 10%, и их спектральное разрешение составляет около 30 нм. Подобный спектрометр включает в показания слишком большую часть спектра и может неточно отражать биосинтетический потенциал источника света UVB.




Прибор для определения длины волны Solarmeter 6,5


Только спектрорадиометры могут измерять ультрафиолетовое излучения с высокой точностью до 12 нм, но, к сожалению, это оборудование очень дорогое и не портативное. В идеале все лампы, продаваемые в специализированных зоомагазинах, должны иметь маркировку или, что еще лучше, быть проверены и испытаны с использованием спектрорадиометра. В настоящее время перспективными разработками эффективности ультрафиолетового излучения различных ламп занимаются главным образом в лаборатории Техасского университета, в котором участвуют несколько специализированных герпетологических центров и зоопарков, а также Британская и Ирландская ассоциация зоопарков и аквариумов (BIAZA) и рабочая группа рептилий и амфибий (RAWG).

По версии BIAZA и RAWG, из четырех типов ламп, представленных на мировом рынке террариумистики (люминесцентные лампы Е8 и Т5, отличающиеся от ламп общего назначения только покрытием на стеклянной колбе; лампы ртутные; металлогалогеновые лампы), наиболее соответствуют заявленным требованиям и максимально приближены к солнечному спектру металлогалогеновые лампы. При этом лампы, излучающие ультрафиолетовое излучение ниже порога 290 нм, опасны для здоровья рептилий, а UVB выше 300 нм разрушают синтезируемый витамин D3. Именно поэтому оптимальное ультрафиолетовое излучение ламп проходит в диапазоне 290300 нм, так как пик чувствительности синтеза витамина D3 находится в зоне 295 + 3 нм. Ниже мы даем краткую характеристику всем типам ламп, согласно данным ассоциаций.

ЛЮМИНЕСЦЕНТНАЯ ЛАМПА Т8 Лампа этого типа не излучает короткие волны (ниже 290 нм), очень мало ниже 300 нм и практически не излучает UVB ниже 295 нм. Высока доля UVA от 320 до 335 нм, которые позволяют синтезировать витамин D3 в незначительном количестве. По сравнению с солнечным светом основная доля UVB находится в области более коротких длин волн, и возможна высокая фотореактивность, присутствует риск повреждения ДНК. Эти лампы с низким уровнем теплового излучения.

ЛЮМИНЕСЦЕНТНАЯ ЛАМПА Т5 схожая по своим характеристикам с Т8. Этого типа лампа не излучает короткие волны (ниже 290 нм), очень мало ниже 300 нм и практически не излучает UVB ниже 295 нм. Высока доля UVA от 320 до 335 нм, которые позволяют синтезировать витамин D3 в незначительном количестве. По сравнению с солнечным светом основная доля UVB находится в области более коротких длин волн, и возможна высокая фотореактивность, присутствует риск повреждения ДНК. Эти лампы с низким уровнем теплового излучения.





ЛАМПЫ РТУТНЫЕ лампы с ртутным паром, как правило, со встроенным балластом. Все типичные лампы излучают пограничный UVC (280282 нм) и небольшое количество UVB (ниже 290 нм). Высокая доля UVB в области длин волн, которые позволяют синтезировать витамин D3 в коже. Однако в отличие от естественного солнечного света, спектр лампы создает высокий риск значительного повреждения ДНК. Не рекомендуется использовать эти лампы для постоянного освещения. Обязательно использование с помощью термостойких светильников. К ним относится лампа известного бренда Osram с эффектом горного солнца. Выпускается она еще под названием Radium Sanolux HRC 300 w и Self-Ballasted R40.

МЕТАЛЛОГАЛОГЕНОВЫЕ ЛАМПЫ спектр ламп близок к естественному солнечному свету. Будет отличным выбором для создания искусственного солнечного света в террариуме в сочетании с источником излучения UVB. Эти лампы не излучают опасных UVC и UVB (ниже 290 нм). Подобно солнечному свету, они практически не излучают UVB ниже 295 нм. В ультрафиолетовом диапазоне этот спектр довольно похож на солнечный спектр. Лучшие по качеству в этом типе ламп: Iwasaki EYE Color Arc PAR36 6500K 150watt SPOT и Lucky Reptile Bright Sun Desert UV версия 50 Вт.

Набирающие популярность компактные лампы со встроенным балластом под патрон Е27 мы бы отнесли к люминесцентым лампам, так как принцип работы у них одинаковый. По этой группе ламп достоверной информации пока крайне мало, чтобы дать им объективную оценку. Производство ламп, дающих качественное ультрафиолетовое излучение, сравнительно дорогое, именно поэтому эти лампы далеко не бюджетный вариант. Любители часто испытывают искушение приобрести более дешевые источники ультрафиолетового излучения. По понятным причинам мы не описываем здесь лампы, предназначенные для соляриев, специальные ртутные лампы: хотя они излучают ультрафиолетовый спектр UVB, но на уровне, небезопасном для рептилий.

Все лампы, излучающие UVB, имеют ограниченный срок эксплуатации, после которого излучение сводится к минимуму. Одни лампы поддерживают излучение в течение года, снижая производительность до 48% (4000 часов использования при 1012 часах в день). Другие после использования только 1000 часов (1012 часов в день) снижают уровень излучения до 64%, тем самым ставя под сомнение их дальнейшее использование (Baines et al., 2016). При эксплуатации ламп с отражателями значительно увеличивается уровень ультрафиолетового излучения в террариуме. Даже самые современные ультрафиолетовые лампы UVB не идеальны, и даже у них возможны всплески в сторону коротких волн, что представляет опасность для гекконов. Поэтому так важен контроль ламп, излучающих ультрафиолетовый спектр.

Использование светодиодных ламп в качестве источника ультрафиолетовых волн (UVB) сомнительно, и пока нет реальных продуктов этой линейки ламп. В Интернете нам неоднократно приходилось читать о возможном использовании в качестве источников UVB галогеновых ламп при удалении защитного стекла, так как ультрафиолет, излучаемый лампой, блокируется стеклом. Это не только лишено доказательств и веских аргументов, но и крайне опасно для самих рептилий. Мы попытаемся развеять этот миф, основываясь на специальных исследованиях (Baines et al., 2005).




Ожог у геккона Naultinus grayii полученный в период зимней диапаузы от патрона лампы


Отличие галогеновых ламп от ламп накаливания заключается в закачивании в колбу с вольфрамовой нитью под давлением газа (брома или йода). Тем самым увеличивается температура накаливания нити (до +3000 °С) и срок эксплуатации лампы. Для защиты от высоких температур используют кварцевое стекло, так как обычное может расплавиться. В качестве образца для исследований использовали галогеновую 240-вольтовую лампу. После снятия защитного стекла эта лампа действительно излучает ультрафиолет, и ее выходная мощность UVB составила 40 мкВт/см2 на расстоянии 20 см (австралийская середина зимы ультрафиолетовое излучение 60 мкВт/см2), но при этом температура нагрева в этом месте составила +137,9 °С. Если удалять радиометр от лампы, то последние, еле различимые прибором лучи UVB находятся в зоне температуры +40 °С. Не думаем, что это зона оптимальных температур для многих видов рептилий. Если учесть опасность взрыва этих ламп при попадании на них капель воды и, как следствие, возможность травмирования рептилий горячими осколками, то надо понимать, насколько бесполезны и опасны галогеновые лампы в качестве источника ультрафиолета в террариуме.

Назад Дальше