Устройства радиочастотной идентификации в библиотечных технологиях - Тимошенко Игорь Владимирович 2 стр.


Электромагнитные волны ВЧ диапазона имеют большую проникающую способность и практически свободно проходят через диэлектрические материалы, такие как картон, бумага, дерево, что позволяет уверенно считывать метки этого диапазона на книгах, сложенных в стопках или размещенных на стеллажах. Наличие в рабочей зоне токопроводящих материалов (металл, вода) оказывает влияние на работу антенн считывателей и меток и может помешать работе РЧИ системы. Для работы меток на металлических поверхностях или при маркировке емкостей с водой, используют специальные метки и считыватели, учитывающие такое влияние.

Системы НЧ диапазона имеют наибольшую проникающую способность, но при этом их рабочая зона не превышает 1 см, поэтому очень высокая проникающая способность рабочего поля считывателя не имеет существенного значения для работы таких систем РЧИ.

Рассмотренные свойства систем РЧИ существующих частотных диапазонов определяют области их применения.

Высокая дальность действия и скорость обмена данными систем МВЧ диапазона позволяет их эффективно использовать в системах позиционирования реального времени (RTLS системы), а также в транспортной логистике, для идентификации движущихся автомобилей и контейнеров, находящихся в прямой видимости.

Системы СВЧ нашли широкое применение в складской и транспортной логистике, в системах учета движения товаров в цепочке поставок, там где требуется повышенная дальность считывания меток и не требуется долгое нахождение персонала в рабочей зоне считывателей. В настоящее время производители СВЧ оборудования работают над его совершенствованием с целью расширения сферы его применения, активно внедряясь в области, где традиционно работает оборудование других диапазонов. К таким областям можно отнести системы оплаты проезда по скоростным дорогам, маркировку упаковок с жидкостями, маркировку документов в библиотеках.

Системы ВЧ широко используются там, где требуется передача относительно больших объемов данных при невысокой дальности и обеспечении информационной безопасности в банковских платежных системах, системах оплаты услуг транспорта, на горнолыжных курортах, в системах контроля доступа. Там, где требуется высокая проникающая способность рабочего поля считывателей для работы с маркированными объектами при небольшой и средней дальности, не находящимися в прямой видимости, контактирующими с металлом или жидкостями маркировка продуктов питания, фармацевтической продукции, а также в библиотеках для маркировки документов и в качестве электронных читательских билетов.

Системы НЧ диапазона широко применялись в системах контроля доступа для автоматизации проходных, автомобильных стоянок, также они использовались как подкожные импланты для маркировки животных. В настоящее время НЧ системы активно вытесняются системами РЧИ более высокочастотных диапазонов.

Из всех видов устройств РЧИ, обладающих разными техническими характеристиками, наиболее подходящими для использования в условиях библиотеки оказались устройства, работающие с пассивными метками ВЧ диапазона. Именно они в настоящее время наиболее востребованы в системах автоматизации библиотек различного профиля во всем мире.

Близкими по своим характеристикам к ВЧ диапазону являются устройства РЧИ СВЧ диапазона, получившие широкое распространение в системах автоматизации складов, торговых и транспортных предприятий. Предпринимаются попытки внедрения устройств этого типа в библиотеки, но в настоящее время их широкому использованию в библиотечных технологиях препятствует ряд причин, как технического, так и административного характера.

§ 1.3. Принцип работы и основные составляющие системы РЧИ

Основной принцип работы РЧИ систем заключается в автоматической бесконтактной идентификации учитываемых объектов при появлении их в рабочей зоне специальных устройств считывателей радиочастотной идентификации (считывателей РЧИ). Объекты должны быть промаркированы радиочастотными метками, содержащими в себе электронную интегральную схему и антенну. Как правило, интегральная схема метки использует для работы энергию электромагнитного поля, создаваемого считывателем. При этом в отличие от штрихового кодирования, для радиочастотной идентификации не требуется визуальный контакт между считывателем и поверхностью метки. Метка может быть спрятана внутри объекта, например, наклеена на внутренней стороне обложки книги или вклеена в переплёт. Сама книга может быть помещена в коробку, сумку и т. д. Единственным условием для работы системы РЧИ является радио-прозрачность материалов, отгораживающих метку от считывателя.

Каждая радиочастотная метка имеет уникальный код, присвоенный при её изготовлении. Кроме того, метки различных типов могут содержать в себе перезаписываемую память различной конфигурации.

Обязательным условием работы оборудования РЧИ является наличие компьютерной системы автоматизации учетных операций с промаркированными объектами. Фактически, технология РЧИ предназначена для автоматизации информационного обмена между меткой и компьютером. Методика дальнейшего использования этой информации целиком определяется технологией работы предприятия и архитектурой его компьютерной системы. Физические условия взаимодействия считывателей РЧИ и радиочастотных меток также определяются технологическими особенностями производственных процессов, в которых они используются. На различных предприятиях условия использования оборудования РЧИ могут существенно различаться, что требует применения оборудования различных типов, отличающегося своими техническими характеристиками.

Общая структура системы РЧИ показана на рисунке 5 и включает в себя следующие элементы:

1 управляющий компьютер,

2 считыватель РЧИ,

3 рабочая область считывателя РЧИ,

4 радиочастотную метку.


Рисунок 5 Структура системы радиочастотной идентификации


Управляющий компьютер, работающий по программе, определяющей его функциональное назначение в технологической системе, подает команды на считыватель РЧИ. По команде управляющего компьютера считыватель РЧИ взаимодействует с радиочастотными метками, находящимися в его рабочей зоне. Взаимодействие считывателя и радиочастотной метки в системе РЧИ происходит за счет обмена данными. Для обмена данными с меткой считыватель создает электромагнитное поле в своей рабочей зоне. Размеры рабочей зоны считывателя определяются его мощностью и конструкцией его антенны. Если в рабочую зону антенны считывателя попадает радиочастотная метка, энергия электромагнитного поля на её антенне преобразуется в электрическую энергию, которая обеспечивает работу интегральной схемы метки. Считыватель в небольших пределах изменяет параметры своего электромагнитного поля синхронно с передаваемыми данными (модулирует поле данными). Эти изменения детектируются меткой, дешифрируются её блоком управления и воспринимаются как команды считывателя. Результат выполнения команд передается считывателю также за счет модуляции поля считывателя со стороны метки путем замыкания её антенны синхронно с передаваемыми меткой данными. Таким образом, метка передает данные для считывателя, не излучая энергии. Передача данных от метки происходит за счет манипуляции параметрами электромагнитного поля считывателя. Обмен данными между считывателем и меткой происходит по сложному алгоритму, позволяющему считывателю одновременно работать с несколькими метками в своей рабочей зоне (алгоритм антиколлизии), а также отстраиваться от возможных помех, создаваемых другими электронными устройствами, которые могут оказаться в рабочей зоне считывателя.

§ 1.4. Принцип работы и устройство меток РЧИ

Наибольшее распространение в библиотечных системах автоматизации в настоящее время получили пассивные метки РЧИ, работающие в ВЧ диапазоне (13,56 МГц). Конструктивно такие метки могут быть выполнены в виде пластиковых карт или бумажных самоклеющихся этикеток.

Конструкция пассивной метки РЧИ, выполненной в виде этикетки с клеевым слоем показана на рисунке 6. Метка состоит из бумажного или прозрачного полимерного (ПЭТ полиэтилентерефталат) лицевого защитного покрытия (1). Под ним располагается полимерный инлей (2) на полимерной (ПЭТ) основе, на котором закреплена интегральная схема (3) и антенна (4). На инлей нанесён клеевой слой (5) из специального акрилового клея. Метки поставляются наклеенными на легко отделяемую подложку (6) изготовленную из силиконизированной бумаги.


Рисунок 6 Конструкция метки РЧИ


Главными конструктивными элементами, определяющими работу метки РЧИ, являются интегральная схема и антенна. Можно сказать, что метка состоит из интегральной схемы, подключенной к антенне. В состав интегральной схемы входит блок управления, энергонезависимая память, радиочастотный блок и модулятор, как показано на рисунке 7.

Антенна метки представляет собой несколько витков электрического проводника, выполненного из меди или алюминия, подключенного к интегральной схеме. Антенна служит для преобразования энергии рабочего поля считывателя в электрический ток, который обеспечивает питание интегральной схемы, и получение данных от считывателя РЧИ.

Радиочастотный блок служит для обнаружения изменений характеристик рабочего поля считывателя РЧИ и преобразования их в двоичные данные, поступающие на блок управления.

Модулятор метки служит для кратковременного замыкания антенны метки синхронно с передаваемыми меткой данными. Такие манипуляции с антенной создают переменную нагрузку на рабочее поле считывателя РЧИ и воспринимаются им как данные, передаваемые меткой.


Рисунок 7 Устройство метки РЧИ


Энергонезависимая память служит для хранения данных, используемых при работе метки в системе РЧИ. Большая часть памяти метки доступна для изменения хранимых данных по командам, получаемым меткой от считывателя РЧИ.

Блок управления служит для интерпретации данных, передаваемых считывателем РЧИ, в команды, их исполнения и формирования данных для передачи считывателю как результата выполнения команд. В процессе обработки команд считывателя блок управления контролирует работу радиочастотного блока, модулятора и энергонезависимой памяти.

§ 1.5. Принцип работы и устройство считывателей РЧИ

Считыватель РЧИ представляет собой микропроцессорное устройство, имеющее в своем составе радиочастотный блок и антенну, как показано на рисунке 8. Считыватель подключен к компьютеру через стандартный канал связи, обычно это компьютерный USB порт.

Антенна считывателя конструктивно аналогична антенне метки, но может иметь больший размер. Конкретный размер антенны определяются технологическим предназначением считывателя и конструкцией его корпуса. Антенна служит для создания рабочего поля (для считывателей ВЧ диапазона это магнитное поле) энергия которого используется метками для работы.

Радиочастотный блок считывателя служит для формирования высокочастотных электрических сигналов, преобразующихся в энергию рабочего поля. Кроме того, радиочастотный блок формирует изменения рабочего поля считывателя синхронно с передаваемыми для меток данными. В режиме приема он преобразует изменения рабочего поля, производимые метками, в данные, формируемые метками в процессе работы системы РЧИ.

Микропроцессорный блок служит для преобразования команд, получаемых от управляющего компьютера в последовательности команд, передаваемых меткам РЧИ, находящимся в поле считывателя. В результате выполнения команд управляющего компьютера осуществляется обмен данными между системой автоматизации РЧИ и метками с целью идентификации маркированных метками объектов.


Рисунок 8 Устройство считывателя РЧИ


Интерфейсный модуль связи с компьютером служит для получения команд от управляющего компьютера и обмена данными в процессе работы системы РЧИ. Считыватели различных типов могут иметь различные интерфейсные модули. Наиболее распространенным интерфейсом является USB-порт компьютера, к которому считыватель подключается по кабелю. Некоторые типы считывателей могут иметь сетевой интерфейс и осуществлять обмен данными с компьютером по сетевым протоколам TCP/IP. Кроме того, связь считывателя с компьютером может осуществляться через беспроводные интерфейсы Wi-Fi или Bluetooth.

Более подробную информацию об устройстве и принципах работы систем радиочастотной идентификации можно найти в работе Богатырева Е. А. «RFID-системы: основы построения, функционирования и применения» [3].

Заключение

Технология РЧИ появилась как результат развития радиотехники и радиоэлектроники. Теоретические основы технологии были заложены в 192040-х гг. Первые устройства РЧИ появились и начали применяться на практике в конце ХХ в., но их широкое распространение началось в конце 1990-х начале 2000-х гг. в связи с появлением микроэлектронных устройств. Принцип работы РЧИ систем основан на автоматической идентификации объектов, маркированных РЧИ метками, при их попадании в рабочую зону РЧИ считывателей. Существуют различные виды РЧИ оборудования. В зависимости от вида устройств РЧИ, они обладают существенно разными характеристиками, определяющими конкретные области их применения. Наибольшее распространение в библиотечных системах автоматизации получило оборудование РЧИ, работающее в ВЧ диапазоне радиоволн, использующее пассивные РЧИ метки, не имеющие источника питания, использующие для работы энергию поля, создаваемого РЧИ считывателем в рабочей зоне и выполненные в виде этикеток с клеевым слоем.

Контрольные вопросы к главе 1

1. Развитие каких областей знания привело к появлению технологии РЧИ?

2. Изобретение каких устройств стало предпосылками к появлению РЧИ?

3. Какие основные виды устройств РЧИ существуют в настоящее время?

4. Какие виды устройств РЧИ используются сегодня в библиотеках?

5. Какие основные составляющие элементы системы РЧИ?

6. На каком принципе основана передача данных от считывателя к метке и от метки к считывателю?

7. Из каких основных функциональных элементов состоит метка РЧИ?

8. Из каких основных функциональных элементов состоит считыватель РЧИ?

9. Каково основное предназначение системы РЧИ?

10. Каковы основные преимущества технологии РЧИ в сравнении с технологией штрихового кодирования?

Глава 2. НОРМАТИВНАЯ БАЗА ТЕХНОЛОГИИ РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ

Введение

Роль стандартов в развитии любого вида деятельности заключается в закреплении накопленного опыта в виде общепринятых правил, выполнение которых способствует его дальнейшему развитию. В полной мере это относится и к технологии радиочастотной идентификации.

В этом разделе представлена нормативная база применения технологии РЧИ в библиотеках. Показаны исторические предпосылки появления первых стандартов и современное состояние стандартизации в области РЧИ. Показаны и даны характеристики основных систем стандартов, определяющих работу устройств РЧИ. Приведены основные положения стандартов, регламентирующих применение РЧИ оборудования в библиотеках. Так же, изложены основные требования со стороны государственных контролирующих органов к применению устройств РЧИ на территории Российской Федерации на использование частотных диапазонов и условий излучения электромагнитных волн, а также на соответствие установленным санитарным нормам.

Назад Дальше