Точность (precision) это метрика, которая оценивает способность модели идентифицировать только правильные положительные примеры. Она определяется как отношение числа правильно предсказанных положительных примеров к общему числу положительных предсказаний.
Полнота (recall) это метрика, которая оценивает способность модели корректно идентифицировать положительные примеры. Она определяется как отношение числа правильно предсказанных положительных примеров к общему числу действительно положительных примеров.
Оценивая модель на основе точности и полноты, можно получить более полное представление о том, как она работает в задаче классификации. Например, высокая точность означает, что модель дает небольшое количество ложных положительных предсказаний, тогда как высокая полнота означает, что модель корректно предсказывает большое количество положительных примеров.
Обе метрики имеют свои преимущества и ограничения. Выбор между ними зависит от конкретной задачи и требований. В некоторых случаях, цель может быть сделать упор на максимизацию точности, чтобы уменьшить ложные срабатывания. В других случаях, приоритет может быть установлен на максимизацию полноты, чтобы минимизировать пропущенные положительные примеры.