С каждым вдохом: Удивительная история наших легких - Лосон Ольга 3 стр.


Мы склонны ассоциировать процесс фотосинтеза с растениями, но почти наверняка первыми его начали использовать цианобактерии. Считается, что миллионы лет назад предки цианобактерий слились с более крупными клетками в процессе, называемом эндосимбиозом, эволюционировали и превратились в содержащие хлорофилл хлоропласты, благодаря которым более крупные клетки смогли осуществлять фотосинтез. Впоследствии эти клетки, содержащие хлоропласты, объединились друг с другом и стали предшественниками современных растений и водорослей.

Несмотря на весь наш технический прогресс, мы можем только восхищаться тем, как цианобактерии, а затем и растения овладели фотосинтезом. Люди рано поняли, как сжигать углерод, но мы до сих пор не можем производить его самостоятельно из углекислого газа и света. Если бы фотосинтез можно было смоделировать искусственно, это стало бы золотым ключом к решению наших энергетических проблем; это также решило бы проблему глобального потепления, позволив вывести углекислый газ из атмосферы.

Теперь, оглядываясь назад, мы знаем, что взрывное развитие жизни в кембрийский период, около 500 млн лет назад, в значительной степени подхлестнуло повышение концентрации кислорода в атмосфере, который производили цианобактерии{21}. Без этих маленьких существ не было бы сейчас ни высших животных форм жизни, ни большинства растительных форм жизни.

Наши легкие развились, чтобы использовать кислород и эффективно управлять нашими метаболическими реакциями. Мы аэробные существа, и если легкие  наш самый важный орган, то кислород  самый важный газ в атмосфере. Анаэробные организмы существуют, но их развитие сдерживается неэффективным методом производства энергии. С кислородом открылись возможности мира. Почти каждое живое существо на Земле зависит от того или иного способа извлечения кислорода, а Джон Уотербери и другие, занимавшиеся океаническими бактериями, помогли нам понять, откуда взялась вся эта жизнь.

Благодаря появлению нового газа в атмосфере Земли, последние 500 млн лет существования нашей планеты радикально отличаются от первых 4 млрд. Первый период был отмечен отсутствием жизни, второй  ее изобилием. Момент появления кислорода и жизни не случаен. Кислород  это жизненная сила, источник бесконечных возможностей жизни.

Вместе с повышением содержания кислорода, производимого цианобактериями, примерно в это же время начала расцветать растительная жизнь. Сначала она возникла в океане, а затем неотвратимо эти растительные формы проникли на выжженный оранжевый массив суши, где в то время не было совершенно ничего, кроме скал. Сначала скалы колонизировали невысокие мхи, затем постепенно там обосновался и более продвинутый растительный мир. Деревья появились позже и повысили концентрацию кислорода еще больше.

Животный мир в насыщенном кислородом океане становился все более сложным. Чем больше растений, тем больше кислорода, а с ним появились черви, двустворчатые моллюски и медузы, использующие примитивные жабры или простую диффузию для извлечения кислорода из океана. В конце концов, за десятки миллионов лет живые существа вышли на землю, заселенную растениями. Насекомые, пауки и черви первыми воспользовались зарождающимся зеленым ландшафтом. Но они не смогли бы совершить этот удивительный переход, не обладая хотя бы какой-то способностью использовать кислород.

У червей нет функционирующей дыхательной системы. Они получают кислород из окружающей их влажной почвы, позволяя ему проникать сквозь кожу в кровь. Высушите червяка, и он задохнется. У пауков и насекомых есть дыхательная система, но это просто длинная трубка, проходящая через их тело, которая позволяет кислороду распространяться по окружающим тканям. У всех этих видов нет мышечной системы, которая содействовала бы более эффективному использованию кислорода, и нет способа значительно увеличить снабжение кислородом, когда это требуется. Эти примитивные системы ограничивает отсутствие эффективности. Поэтому тело и мозг этих существ не могут вырасти до больших размеров. Их сдерживает отсутствие легких.

Черви и пауки выползали из моря, а жизнь в океане развивалась гораздо быстрее, чем на суше. Существа увеличивались в размерах, и у них развивались более сложные органы. Появились позвоночные животные с эндоскелетом и кожным покровом, а также рыбы со знакомыми нам органами, такими как мозг, печень, сердце и пищеварительный тракт. Эти сложные позвоночные начали заселять множество различных водных ниш, от самых высоко расположенных рек до самых глубоких океанских впадин. Девонский период, длившийся с 420 до 359 млн лет назад, известен как эпоха рыб из-за взрывного роста количества видов и количества мест их обитания{22}.

Рыбы, вероятно, столь разнообразны, потому что выработали способность использовать кислород через эффективную систему кровообращения. Важная часть этой системы  жабры. У большинства рыб с обеих сторон есть по одной щели, через которую протекает вода. Обширная сеть капилляров в жабрах извлекает кислород из поступающей воды. Капилляры также выводят углекислый газ через газообменную систему, подобную нашей. Еще у большинства рыб вокруг жабр имеются мышцы, с помощью которых жабры могут раздуваться и увеличивать поток воды и приток кислорода в систему по мере возрастания потребности в энергии. Это хорошая система использования кислорода, и это объясняет, почему некоторые рыбы смогли стать одними из крупнейших существ на Земле.

Со временем, и только после того как у них развились легкие как способ извлечения кислорода из атмосферы, рыбы вышли на сушу. Это уникальное и экстраординарное превращение, хотя для него и потребовались десятки миллионов лет. Оно завораживает нас, потому что мы можем думать о нем как о моменте нашего рождения, символическом моменте, когда жизнь, какой мы ее знаем, уже была не за горами. Этот переход стал возможен благодаря появлению легких, органа, который определяет нас как сухопутных существ.

Считается, что метаморфозы в рыбах начали происходить в мутных водах мелководья, на стыке океана и суши. Возможность длительное время находиться вне воды, чтобы воспользоваться преимуществами суши, изобилующей пищей в виде растений, была явно выгодной с точки зрения приспособляемости.

Вопрос о том, как именно у рыб впервые развились легкие, обсуждается уже давно. Единственное, что кажется очевидным, хотя и не интуитивным,  это то, что наши современные легкие образовались не из жабр. Интересно, что жабры некоторых рыб, особенно клариусов, разновидности сома, эволюционировали в подобие легких. У этих рыб, типичных обитателей Азии, теперь захватывающих Флориду, возникла очень небольшая зона газового обмена, которая открывается только тогда, когда они закрывают свои жабры.

Наши легкие, однако, скорее всего, зародились как выпячивание пищевода, когда рыбы начали дышать, просто глотая воздух, который затем попадал в систему циркуляции путем простого осмоса. Некоторые рыбы сохранили это изначальное выпячивание, известное как плавательный пузырь, который заполнен воздухом. Современные рыбы используют плавательный пузырь в качестве балластного механизма для плавучести. Но у некоторых ранних рыб этот пузырь развился в легкие, какими мы их знаем сегодня.

Еще одной важной трансформацией, необходимой рыбам для успешной жизни на суше, было формирование ног, которые давали максимальную маневренность вне воды. Существа с четырьмя конечностями называются четвероногие  класс, в который сегодня входят все млекопитающие, рептилии, птицы (крылья тоже считаются конечностями) и земноводные. Скорее всего, в девонский период, около 400 млн лет назад, из океана вышел первый тип четвероногого с только что и одновременно сформировавшимися легкими и ногами.

Ископаемые находки данного периода демонстрируют явные признаки того, что некоторые рыбы пытались выйти на сушу. Эти первые колонизаторы имели более четко выраженную костную структуру в плавниках и зачатки легких в дополнение к жабрам. Одной из таких рыб был целакант, или латимерия, которая, как считалось, вымерла миллионы лет назад. Это убеждение изменилось случайно в один прекрасный солнечный день 1938 г., когда одна молодая женщина в Южной Африке заметила нечто необычное на рыболовецком судне, породившее историю о необыкновенной рыбе и международную сенсацию.

Марджори Куртене-Латимер была куратором музея из Ист-Лондона (ЮАР), расположенного между Кейптауном и Дурбаном на восточном побережье ЮАР. В рамках своей работы Марджори отвечала на звонки местных рыбаков, поймавших что-нибудь интересное. Звонок, который изменит ее жизнь, раздался 22 декабря 1938 г. Звонил капитан Хендрик Госен, вернувшийся с рыбалки в Индийском океане, в районе устья реки Чалумна. Марджори приехала, чтобы проверить, не было ли в улове каких-либо необычных экземпляров, и заметила синий плавник, выглядывающий из-под кучи скатов и акул на палубе. Она разгребла других рыб и наткнулась на, как она позже описывала, «самую красивую рыбу, которую я когда-либо видела, длиной полтора метра, бледного лилово-синего оттенка с радужными серебристыми отметинами. Она была покрыта твердой чешуей, имела четыре плавника, похожие на конечности, и странный хвост, как у щенка»{23}.

Марджори никогда раньше не видела такой рыбы, поэтому она отправила телеграмму с наброском доктору Джеймсу Смиту, местному профессору химии с репутацией ихтиолога-любителя. Доктор Смит сразу же понял, насколько важна была эта находка, и отправил ответную телеграмму: «САМОЕ ГЛАВНОЕ: СОХРАНИТЕ СКЕЛЕТ И ЖАБРЫ ОПИСАННОЙ РЫБЫ». В волнении, он прервал свой отпуск на два дня раньше и отправился в Ист-Лондон, где сразу же идентифицировал рыбу как целаканта, призрака из эволюционного прошлого, который, как считалось, вымер 66 млн лет назад. Рыба получила название Latimeria chalumnae (от фамилии Марджори и названия реки, в которой была поймана), а изучив ее, а также еще одну, пойманную несколькими годами позже, ученые четко увидели по анатомическому строению, что эта рыба представляет собой начальный переход из океана на сушу. Во-первых, у нее была некая структура в грудной клетке, которую можно было бы описать как легкое, только у целаканта она была наполнена жиром. Во-вторых, в отличие от простых плавников современных рыб, в ее четырех плавниках был хрящ, делающий их явными предшественниками наших современных конечностей. Будучи донным обитателем, целакант использовал свои плавники последовательно, один за другим, неуклюже передвигаясь по дну океана.

Целакант стал международной сенсацией, когда его «открыли» в 1938 г., но на земле живут и другие виды, которые проливают еще больше света на ранние этапы развития легких и ног. В то время как у целаканта есть зачатки легких, у некоторых рыб есть настоящие легкие. Наиболее узнаваемыми из этих существ являются илистые прыгуны, рыбоподобные существа размером 9 см, естественной средой обитания которых являются илистые равнины в восточной части Мадагаскара, а также в некоторых районах южного Китая и северной Австралии. Илистый прыгун прекрасен не своим внешним видом; на самом деле у него отталкивающая выпуклая, раздутая голова с глазами навыкате, его покрытое слизью тело внушает отвращение, а два странно расположенных на спине плавника выглядят налепленными кое-как. Но существование илистого прыгуна оправдывается тем, что он обладает удивительной способностью дышать как в воде, так и на суше. Вот он весело плавает в воде, а вот уже выпрыгнул на сушу, агрессивно защищая свою территорию, раззявив рот и угрожающе расправив плавники. Для этого илистый прыгун не только сохранил жабры, но и приспособился поглощать кислород через кожу, рот и эпителий глотки (область ниже рта, но выше пищевода и трахеи). Он может оставаться на суше в течение нескольких дней, перекрывая свои жабры лоскутом втягивающейся кожи и сохраняя их влажными. У него также развились рудиментарные передние конечности  маленькие ручки, с помощью которых он может передвигать свое скользкое тельце в своей илистой среде обитания.

Илистый прыгун не единственный вид, сохранившийся с того периода выхода из воды на сушу 400 млн лет назад. Амфибии, особенно лягушки, жабы и тритоны, могут дышать с помощью кожного дыхания, при котором кровь, протекающая в коже, забирает кислород и выделяет углекислый газ. Амфибии пользуются этой системой как под водой, так и на суше. Австралийский рогозуб  это еще одно эхо нашего эволюционного прошлого. Это один из шести оставшихся видов двоякодышащих рыб, который оказался наиболее эффективным: он по-прежнему обитает в двух мирах  в океане и на воздухе. Он выглядит неопасным, у него длинное, оливково-зеленое, массивное, змееподобное тело, маленькие глазки и четыре плавника, с помощью которых он передвигается как в воде, так и на суше. У него не такие уж маленькие размеры: в среднем его масса тела составляет солидные девять килограммов, а длина  более метра. Он живет в мелководных, мутных, пресных водах Квинсленда на севере Австралии, в уединенном, тихом месте, где обитают изолированные виды, казалось бы, застывшие во времени. Существующего в течение 370 млн лет австралийского рогозуба также окружает ореол первобытности, как будто бы для него было бы привычным ускользать от укуса птеродактиля или стремительных челюстей крокодила.

Использование кислорода рогозубами впечатляет, потому что они могут обитать и как рыбы в воде, и как сухопутные существа на суше. В отличие от илистого прыгуна, у рогозуба есть настоящие легкие, с настоящими ячейками газообмена, а не только простая диффузия воздуха через мембрану. Он может жить несколько дней на суше, питаясь растениями, которые иначе были бы для него недоступны. Легкие также оказываются полезными, когда воды в естественной болотистой среде обитания рыбы становится мало.

Целакант, илистый прыгун и австралийский рогозуб  это увлекательное окно в наше прошлое, показывающее, как виды экспериментировали с различными способами извлечения кислорода. Без кислорода и способа его извлечения ни нас, ни большинства видов, живущих вокруг нас, не было бы вовсе.

Перекресток, где встречаются наше существование, кислород и дыхание, интересен не только как история, но и как дорожная карта, указывающая нам путь в будущее. Выдающиеся ученые предупреждают нас, что жизнь на нашей планете уязвима, что в любой момент астероид или ядерная война могут стереть нас всех с лица земли. Они предупреждают, что когда-нибудь судьба человечества, да и всех видов, возможно, будет зависеть от того, сможем ли мы покинуть планету.

Для этого мы, конечно, должны подумать о наших легких. Сейчас, примерно 400 млн лет спустя, мы снова столкнулись с вызовом, которому успешно противостояли илистый прыгун, целакант и рогозуб,  научиться выживать в негостеприимной окружающей среде. К сожалению, мы не можем изменить наш орган извлечения энергии так, как это сделали они, но мы можем попытаться сделать токсичную атмосферу более благоприятной.

В качестве первого кандидата на колонизацию рассматривается Марс, а технический процесс превращения атмосферы на этой планете в подходящую для людей называется терраформированием. Существует множество препятствий, в том числе крайне низкая температура и малая сила притяжения по сравнению с Землей. Но еще большей проблемой является сама атмосфера Марса, которая состоит на 95 % из углекислого газа, на 2,7 % из азота, на 1,6 % из аргона и всего на 0,13 % из кислорода. Кроме того, воздух чрезвычайно, примерно в 100 раз, более разреженный, чем на Земле. Поэтому нам придется каким-то образом сделать атмосферу более плотной и наполнить ее кислородом.

Назад Дальше