Квантовые явления в системах сильной связи. Формула и применение - ИВВ 2 стр.



Основные понятия:


1. Уровни энергии: Энергетические уровни представляют собой дискретные значения энергии, которые может принимать квантовая система. Они определяются квантовыми числами, такими как главное квантовое число, орбитальное квантовое число и магнитное квантовое число для атомов, и формируют «лестницу» энергетических состояний системы.


2. Переходы между уровнями: Квантовая система может переходить с одного энергетического уровня на другой путем поглощения или испускания кванта энергии. Эти переходы сопровождаются излучением или поглощением электромагнитного излучения и могут быть вызваны внешними воздействиями, такими как свет или тепло.


3. Квантовые числа: Квантовые числа характеризуют энергетические уровни квантовой системы и определяют их свойства. Главное квантовое число определяет среднюю энергию и радиальное распределение электрона в атоме, орбитальное квантовое число определяет форму орбитали, а магнитное квантовое число определяет ориентацию орбитали в пространстве.


Примеры:


1. Атомы: У атомов энергетические уровни соответствуют различным электронным орбиталям вокруг ядра. Переходы между этими уровнями приводят к испусканию или поглощению фотонов, что приводит к спектральным линиям.


2. Молекулы: В молекулах энергетические уровни связаны с вращательными, колебательными и электронными состояниями. Переходы между этими уровнями могут приводить к изменению длины волны поглощенного или испущенного света.


3. Квантовые ямы: В квантовых ямах энергетические уровни связаны с разрешенными энергетическими состояниями электронов в ограниченной области пространства. Изменение размеров квантовой ямы может приводить к изменению энергетических уровней и оптических свойств материала.


Энергетические уровни играют важную роль в понимании и описании квантовых систем. Их изучение позволяет предсказывать поведение системы при различных условиях и разрабатывать новые квантовые технологии.

Вероятности переходов между энергетическими уровнями

Вероятности переходов между энергетическими уровнями в квантовых системах определяются правилами квантовой механики и зависят от различных факторов, включая выбранный метод возбуждения системы, её окружение и свойства переходящих состояний.

Некоторые из основных моментов, определяющих вероятности переходов:


1. Правила отбора:

 Дипольные переходы: Вероятность переходов между энергетическими уровнями в атомах и молекулах обычно зависит от того, насколько сильно дипольный момент перехода соответствует поляризации электромагнитного поля во время излучения или поглощения.

 Угловой момент: Переходы в атомах могут быть запрещены или разрешены в зависимости от изменения углового момента.


2. Законы сохранения:

 Сохранение энергии: Вероятность перехода между энергетическими уровнями связана с разностью энергии между начальным и конечным состояниями.

 Сохранение импульса: Вероятность перехода также зависит от сохранения импульса системы.


3. Окружение и внешние воздействия:

 Взаимодействие с окружающей средой: Присутствие других частиц или полей может изменить вероятности переходов.

 Интенсивность внешнего излучения: Излучение, возбуждающее систему, может повысить вероятность переходов.


Примеры:

 Спектральные линии: Вероятности переходов между энергетическими уровнями атомов и молекул определяют интенсивность и форму спектральных линий.

 Флюоресценция и фотолюминесценция: Вероятности переходов в флуоресцирующих и фотолюминесцирующих материалах определяют скорость излучения света после возбуждения.


Вероятности переходов между энергетическими уровнями являются фундаментальным аспектом квантовой механики и играют важную роль в понимании и интерпретации квантовых явлений. Их анализ позволяет предсказывать поведение квантовых систем и разрабатывать новые методы контроля и использования квантовых эффектов.

Введение в системы сильной связи

Определение и классификация систем сильной связи

Системы сильной связи  это класс квантовых систем, в которых взаимодействие между компонентами (обычно частицами) сильное по сравнению с их кинетической энергией. Это взаимодействие обычно имеет характер кулоновского отталкивания или притяжения, и оно играет решающую роль в формировании энергетической структуры и свойств системы.


Классификация систем сильной связи:


1. Кристаллические твердые тела:

 В кристаллических твердых телах атомы или молекулы располагаются в регулярной решетке, образующей кристаллическую структуру.

Назад