А самолеты себе летят, перемещая по воздуху тысячи трепетных человеческих душ навстречу душам, томящимся в аэровокзалах, в ожидании и молитве.
Я пишу эту книгу для людей, совершенно далеких от авиации: для домохозяек, которым, может, всего-то раз в год и придется слетать в отпуск самолетом.
Но так как при этом неизбежно придется оперировать авиационными терминами, я постараюсь на пальцах, в примитивном виде, дать первоначальное понятие о принципах безопасного полета самолета – и тем самым заполнить пробел в ваших знаниях, утолить жажду информации.
Профессионалов, любителей точности, формул и графиков прошу пока покурить в сторонке.
Как создается подъемная сила и от каких факторов она зависит?
Возьмем плоскую пластинку и станем обдувать ее ровным воздушным потоком так, чтобы она разрезала воздух. Передняя кромка пластинки разделит струю на две части: одна пойдет над пластинкой, а другая – под нею. А за задней кромкой эти две части потока снова соединятся.
Если верхнюю часть пластинки сделать выпуклой, а нижнюю оставить плоской, то верхняя часть потока, стремясь соединиться с нижней, будет двигаться быстрее: ведь надо успеть пройти по кривой больший путь.
Там, где скорость потока больше, давление всегда меньше. Значит, над пластинкой будет меньшее давление, а под пластинкой – останется то же самое.
Разность давлений под нижней и над верхней поверхностью и создает подъемную силу.
Чем скорость потока больше, тем больше подъемная сила.
Вот так примерно устроено крыло самолета: сверху оно выпуклое, а снизу вроде как плоское.
Теперь повернем пластинку под углом к потоку, приподнимем ее переднюю кромку. Воздух будет набегать уже не параллельно пластинке, а под углом к ней. Этот угол и есть знаменитый угол атаки. Чем он больше, тем больше подъемная сила.
Приподнимем переднюю часть пластинки сильнее. Подъемная сила увеличится, пластинку станет вырывать из рук вверх; так поднимается воздушный змей.
А если поставить пластинку вообще поперек потока, то никакой подъемной силы не будет, а будет одно лобовое сопротивление.
Где же та грань, за которой при увеличении угла атаки подъемная сила начинает пропадать?
Эта граница называется критическим углом атаки.
На самолетах рабочие углы атаки находятся где-то в пределах до 15 градусов. Если крыло задрать еще сильнее, верхняя часть потока, обтекающая его криволинейную поверхность, уже не сможет соединиться с нижней частью потока за задней кромкой крыла. Верхний поток начнет срываться, закручиваться и станет турбулентным. А давление в таком турбулентном, вихреобразном потоке станет равным тому, что под крылом, – и подъемная сила резко упадет.
Значит, для создания и поддержания подъемной силы нужно как-то выдерживать угол атаки крыла, не доводя его до критического значения, – в так называемом летном диапазоне.
Чтобы внезапно не выскочить за предел летного диапазона, надо иметь какой-то запас угла атаки. Если, к примеру, критический угол равен 15 градусов, то лучше лететь на угле атаки 10, имея запас по углу атаки (или запас по сваливанию) 5 градусов. И не задирать крыло выше этих 10 градусов.
Цифры эти приведены здесь весьма произвольно. На самом деле, диапазон летных углов атаки на высоте гораздо более узок: чем больше высота полета, тем меньше становится критический угол атаки, тем ближе подкрадывается он к летным углам.
Таким образом, с ростом высоты полета запас по сваливанию уменьшается.
Выдержать в полете безопасный запас по сваливанию не так и трудно. Как только самолет задирает нос, так его скорость начинает падать. Как только самолет начнет опускать нос, скорость увеличивается. А пилотируется самолет именно выдерживанием скорости.
Если в полете уменьшится тяга двигателей, самолет начнет терять скорость. Для того чтобы сохранить прежнюю подъемную силу, а значит, высоту, придется чуть увеличить угол атаки. Скорость начнет падать. Для сохранения заданной высоты придется все увеличивать и увеличивать угол атаки, выбирая запас по сваливанию.
Многотонный самолет инертен и не так-то быстро теряет скорость. Так что выдерживание безопасного запаса по сваливанию – дело не очень сложное. И автопилот, и пилотирующий вручную летчик делают это автоматически.
Правда, можно одним коротким, резким движением штурвала на себя «вздернуть самолет на дыбы». При этом угол атаки на еще безопасной скорости может выйти за критическое значение. Но так никто не пилотирует.
А если экипаж прозевал, и самолет потерял скорость и подошел к опасному пределу, – хоть что-то может предупредить пилотов?
Во-первых, если угол атаки достиг критического значения и начинается срыв потока с верхней поверхности крыла, завихрения начнут трясти самолет. Перед сваливанием он как бы зависает и весь дрожит. Достаточно сунуть штурвал от себя, опустив нос и уменьшив таким образом угол атаки, как тряска прекращается, а самолет начинает разгонять скорость.
Во-вторых, на тех самолетах, где по конструктивным особенностям срыв потока с крыла не вызывает заметной тряски, устанавливают специальный механизм принудительной тряски штурвала. Как штурвал затрясло – толкай его от себя, и все прекратится.
В-третьих, на некоторых самолетах устанавливают специальный прибор, показывающий наглядно текущий угол атаки и границу критического угла. Шкала прибора крупная. Деления широкие. И вполне можно отдать отчет, как изменяется угол атаки и как близко он подходит к критической черте.
Кроме того, на этом приборе устанавливается еще звуковая и световая сигнализация: загорается красная лампочка и гудит сирена. Если экипаж не услышит сирену, не увидит красную лампочку, не обратит внимание на слившиеся стрелку и красный сектор на шкале прибора – ну, тогда, еще через пару градусов, самолет начнет сваливаться. Но даже в этот момент пилоту достаточно энергично отдать штурвал – и все восстановится.
На любимом моем самолете Ту-154, на котором я пролетал двадцать три года, в полете угол атаки стоит обычно в пределах около шести градусов по прибору. А критический угол караулит где-то на девяти градусах. Самолет себе спокойно идет на автопилоте, все стрелки неподвижны.
По мере выработки топлива вес самолета уменьшается, и ему уже не требуется большая подъемная сила, иначе он станет стремиться набирать высоту. Поэтому автопилот потихоньку опускает и опускает нос вниз, уменьшая таким образом угол атаки. Подъемная сила от этого уменьшения угла тоже уменьшается и вновь становится равной уменьшившемуся полетному весу. Так автопилот выдерживает заданную высоту.
В конце долгого маршрута, глядишь – текущий угол атаки уже где-то около четырех градусов. А критический – так и сторожит на девяти.
Запас по сваливанию растет по мере облегчения самолета. В начале полета, на тяжелом самолете, было три градуса, а теперь, на легком, после выработки топлива, стало пять градусов.
Если воздух на высоте по каким-то причинам станет теплее обычных 55-60 градусов мороза, самолету становится труднее лететь. Двигатели, засасывающие теплый, а значит, более жидкий воздух, теряют тягу. Крыло, обтекаемое жидким теплым воздухом, тоже теряет подъемную силу. Чтобы ее поддержать, самолет вынужден лететь на большем угле атаки, а значит, запас по сваливанию уменьшается.
Когда самолет еще может лететь, но уже не может набирать высоту, это называется «достиг потолка». По мере выработки топлива самолет снова может забраться повыше.