Характер Физических Законов - Голышев Виктор Петрович 8 стр.


Сохранение энергии - несколько более сложный вопрос: хотя и здесь у нас есть число, которое не меняется со временем, число это не соответствует никакому определенному предмету. Чтобы прояснить суть дела, я приведу вам следующее простенькое сравнение.

Вообразите, что мать оставляет в комнате ребенка с 28 кубиками, которые нельзя сломать. Ребенок играет с кубиками целый день, и мать, вернувшись, обнаруживает, что кубиков по-прежнему 28 - она следит за сохранением кубиков! Так продолжается день за днем, но однажды, вернувшись, она находит всего 27 кубиков. Оказывается, один кубик валяется за окном - ребенок его выкинул. Рассматривая законы сохранения, прежде всего нужно убедиться в том, что ваши предметы не вылетают за окно. Такая же неувязка получится, если в гости к ребенку придет другой мальчик со своими кубиками. Ясно, что все это нужно учитывать, рассуждая о законах сохранения.

В один прекрасный день мать, пересчитывая, обнаруживает всего 25 кубиков и подозревает, что остальные 3 ребенок спрятал в коробку для игрушек. Тогда она говорит: "Я открою коробку". "Нет, - отвечает он, - не смей открывать мою коробку". Но мама очень сообразительна и рассуждает так: "Я знаю, что пустая коробка весит 50 г, а каждый кубик весит 100 г, поэтому мне надо просто-напросто взвесить коробку". Затем, подсчитав число кубиков, она получит

На шарнире - рычаг. Длина одного плеча 1 м, другого--4 м. Прежде всего вспомним закон для энергии тяготения: если у вас есть несколько грузов, то вы берете вес каждого груза, умножаете его на высоту над землей, складываете все вместе № получаете полную энергию тяготения. Пусть на длинном плече рычага груз массы 2 кг, на коротком - какой-то неизвестный груз массы X; Х - всегда неизвестная величина, поэтому давайте переименуем ее в W и сделаем вид, будто мы знаем о ней больше, чем на самом деле. Теперь вопрос в том, каким должен быть груз W для равновесия, чтобы рычаг тихо покачивался, но сильно не перекашивался? Если он тихо покачивается, то это означает, что энергия остается одинаковой и когда рычаг горизонтален, и когда он наклонен так, что груз в 2 кг поднялся, скажем, на 2 см. Раз эн ергия одинакова, рычагу безразлично, в каком он положении, и он не перекашивается. Если груз в 2 кг поднимается на 2 см, то насколько опускается груз W? Из рисунка ясно, что если АO = 1 м, а OB = 4 м, то при BBi = 2 см отрезок AAi будет равняться 0,5 см. Теперь применим закон для энергии тяготения. Вначале обе высоты BB и AAi  были равны нулю и общая энергия была равна нулю. Чтобы найти энергию повернувшегося рычага, мы умножаем вес груза массы 2 кг на высоту 2 см и складываем с неизвестным весом W, умноженным на высоту 0,5 см. Сумма должна дать прежнюю энергию - нуль. Поэтому

2 - W / 4 = 0, откуда W=8.

Это один из способов понять простой закон - хорошо известное вам правило рычага. Но интересно, что не только этот, но и сотни других законов можно тесно связать с различными видами энергии. Я привел вам этот пример только для того, чтобы показать, насколько полезен закон сохранения энергии.

Но вся беда в том, что на практике он не выполняется из-за трения в шарнире. Если что-то движется, например по горизонтальному полу катится шарик, то рано или поздно трение его остановит. А куда же денется кинетическая энергия шарика? Энергия движения шарика превратится в энергию колебания атомов пола и атомов шарика. Мир, если смотреть на него издали, кажется круглым, гладким, чисто отполированным шариком, но если посмотреть на него вблизи, он оказывается очень сложным: миллиарды крохотных атомов, всевозможные неровности. Он похож на крупную гальку у нас под ногами, ибо состоит из этих крохотных шариков. Таков и пол - бугристая дорога, насыпанная из шариков. Когда вы катите чудовищный голыш по этой гальке, вы видите, что галька - маленькие атомы - начинает подпрыгивать. После того как шар прокатился, атомы, которые остались позади, продолжают дрожать от тех толчков и ударов, которые они претерпели. Так в полу остается тепловая энергия, колебания атомов. На первый взгляд кажется, что закон сохранения несправедлив, ибо энергия прячется от нас и нам нужны термометры и другие приборы, чтобы ее обнаружить. Но как бы ни был сложен процесс, мы всегда находим, что энергия сохраняется, даже если не знаем других, более детальных законов.

Впервые закон сохранения энергии был продемонстрирован не физиком, а медиком. Он экспериментировал на крысах. Если вы сожжете пищу, то сможете найти, сколько выделилось тепла. Если такое же количество пищи вы дадите крысе, то пища вместе с кислородом превратится в углекислый газ, так же как и при горении. Измерив энергию в обоих случаях, вы обнаружите, что в живых существах происходит то же самое, что и в неживой природе. Жизнь так же подчиняется закону сохранения энергии, как и другие явления. Кстати говоря, всякий закон или принцип, справедливый для "неживой" природы и поддающийся проверке на великом феномене жизни, оказывается справедливым и там. В том, что касается законов физики, до сих пор не обнаружено разницы между неживыми предметами и живыми существами, хотя последние могут быть устроены гораздо сложнее.

Количество энергии в пище говорит вам, сколько тепла, механической работы и т. д. она может произвести. Измеряют эту величину в калориях. Когда говорят о калориях в пище, это значит, что вы едите эти самые калории - они просто мера количества тепла, заключенного в пище. Физики иногда смотрят на других свысока и считают себя такими умными, что людям хочется поймать их на какой-нибудь ошибке. Я скажу вам, на чем их можно поймать. Им должно быть стыдно, что для измерения энергии они пользуются такой уймой способов и названий.

Разве не бессмыслица, что энергию измеряют в калориях, в эргах, в электрон-вольтах, в килограммометрах, в британских тепловых единицах, в джоулях, в киловатт-часах - столько мер для одной и той же величины? Вы можете подумать, что по крайней мере современные первоклассные-то физики-теоретики приняли общую единицу, но затяните в их статьи: тут энергию измеряют и в кельвинах, и в мегагерцах, а теперь еще и в

Еще пример сохраняющейся величины - момент количества движения, о котором мы уже говорили. Например, если у нас есть движущееся тело и мы выберем произвольный центр, то скорость увеличения площади (рис. 20), описываемая отрезком, соединяющим тело с центром, умноженная на массу тела, называется моментом количества движения. Таким образом, момент количества движения численно равен площади, описываемой отрезком, соединяющим тело с центром, при движении тела за единицу времени. Сложив моменты всех тел, входящих в систему, мы получим момент количества движения системы.

Назад Дальше