* Сейчас эта рыба относится к роду анаблепс (Anableps). – В. П.
Вне воды огромное большинство рыб совсем слепы. Но есть и исключения. В мелководных лагунах тропического побережья Южной Америки водится рыбка тетрафтальмус*, что в переводе на русский язык означает четырехглаз. Глаза у нее устроены так, что могут видеть и в воде и в воздухе. Они разделены горизонтальной перегородкой на две части. Перегородка делит и хрусталик, и радужную оболочку, и роговицу. Получается действительно четыре глаза. Нижняя часть, более выпуклая, служит рыбкам для подводного зрения; верхняя, плоская, дает им возможность хорошо видеть в воздухе.Количество света, проникающее на различные глубины, не одинаково. У поверхности светло, но чем глубже, тем темнее. На глубине 200—300 метров еще кое-что видно, а ниже 500—600 метров солнечные лучи вообще не проникают.Поэтому у многих глубоководных рыб огромные глаза. У некоторых они занимают чуть ли не половину головы. Очень большие глаза у морского окуня, морского карася, длиннохвоста.У многих глубоководных рыб телескопические глаза. Они позволяют улавливать лучи света со всех сторон.
Интересно устройство глаз у личинки рыбы идиакантуса. Они расположены на длинных стебельках, равных одной пятой длины всей рыбки. Такое строение увеличивает поле зрения и чувствительность глаза личинки к свету. С виду рыбка напоминает ветку дерева.На очень больших глубинах «большеглазость и пучеглазость» уже не помогают. Поэтому у «сверхглубинных» рыб глаза маленькие или вовсе отсутствуют.У псевдолипариса, обитающего на глубине свыше семи тысяч метров, глаза как маковые зернышки, а у рыбы инопс глазные впадины даже покрыты чешуей.В водах Малайского архипелага обитают рыбки, пользующиеся в темноте собственным освещением. Фонарики расположены у них около глаз и светят вперед совсем как автомобильные фары. Свечение вызывают бактерии, находящиеся в особых трубочках. Все фонареглазые рыбы могут по желанию зажигать и гасить свои фонарики.Малый фонареглаз задергивает фонарик складкой кожи как шторкой. Большой фонареглаз может поворачивать светящийся орган так, что свет бактерий направляется внутрь и становится невидимым. Эти рыбки могут подавать сигналы друг другу, мигая своими фонариками.Среди обитателей морей самые совершенные глаза все же не у рыб, а у головоногих моллюсков — осьминога, кальмара, каракатицы. Они в погоне за рыбой развивают большую скорость, а при таком способе охоты без хорошего зрения не обойтись. Глаза головоногих моллюсков похожи на наши, только приспособление к зрению на различные расстояния достигается, так же как у рыб, приближением или удалением хрусталика к сетчатой оболочке. Веки устроены тоже иначе: они не смыкаются, а задергиваются особой шторкой.Сетчатка головоногих моллюсков чувствительнее, чем у рыб. Например, у каракатицы свет воспринимают 150 тысяч зрительных элементов, а у карпа всего 50 тысяч.Глаза у головоногих моллюсков огромные: у каракатицы диаметр глаза составляет одну десятую длины тела, а у гигантского осьминога они величиной с колесо от детского велосипеда (35—40 сантиметров).У глубоководных кальмаров глаза или телескопические, или расположены на длинных стебельках. Есть и «уроды», у которых один глаз в четыре раза больше другого. Предполагают, что большим глазом кальмар пользуется на глубинах, куда проникает мало света, а маленьким — у поверхности, где освещение хорошее.Головоногие моллюски имеют собственное подводное освещение. Фонарик каракатицы заряжен живым горючим. Особая ямка в чернильном мешке покрыта у нее блестящим веществом, хорошо отражающим световые лучи. Внутри этого рефлектора находится маленький мешочек со светящимися бактериями. На нем расположена прозрачная студенистая линза, через которую лучи, отраженные рефлектором, попадают в воду. Фонарик может выключаться: стоит каракатице выделить в мантийную полость несколько капель чернил — и свет гаснет.Кальмар для освещения пользуется прожектором. Устроен он так: полусферическая камера имеет черные светонепроницаемые стенки и блестящее дно. У выхода из камеры расположено светящееся тело, а непосредственно за ним линза, посылающая лучи во внешний мир. Когда надо потушить прожектор, кальмар затягивает линзу черной непрозрачной диафрагмой. У других кальмаров внутри прожектора есть зеркальце. При повороте его в разные стороны луч света меняет направление — и кальмар по своему желанию может освещать самые укромные уголки.Свет фонариков каракатиц и кальмаров не силен, но, по-видимому, достаточен, чтобы помочь охотникам рассмотреть притаившуюся креветку или краба.Светящихся животных пытались использовать для освещения давно. В стеклянные колбы с морской водой помещали миллиарды светящихся микроорганизмов, и их света оказывалось достаточно для чтения. В 1935 году такими лампами был освещен зал заседаний Парижского океанографического института. Во время войны японцы пользовались вместо карманных фонариков сухими светящимися креветками. Если их смочить, они начинают светиться. Света подобного фонарика вполне достаточно, чтобы рассмотреть стрелку часов или ориентироваться по карте, противник же не заметит света и в сотне метров.Глубоководные рыбы, головоногие моллюски и другие светящиеся животные могут подсказать инженерам-электрикам, как лучше всего получить дешевый свет. В обычных лампах накаливания лишь 10—12 процентов энергии превращается в световую. Немногим меньше потери и в лампах дневного света. «Волшебные» фонари светящихся животных куда экономичней; в них потеря энергии не превышает 10—15 процентов. Сейчас физики и химики многое узнали о природе «живого» света и предполагают вскоре сконструировать самую дешевую лампочку и, что особенно важно, без всяких проводов.Очень своеобразно устроены глаза у насекомых. Они состоят из мельчайших светочувствительных трубочек — омматидий. Снаружи, за прозрачной роговицей трубочек, расположено хрустальное тело, по бокам трубочки выстланы черным пигментом, а в глубине в узкой части находятся светочувствительные клетки.Количество оптических трубочек, из которых построены сложные глаза различных насекомых, не одинаково. У гусениц они состоят всего из нескольких штук, а у стрекозы и мухи из многих тысяч.Хорошо это или плохо — иметь такие глаза? С одной стороны — плохо. Ведь в каждом омматидий получается изображение очень небольшой части предмета, потому что косо падающие на роговицу световые лучи поглощаются черным пигментом и до сетчатки не доходят. В результате общий вид предмета складывается, как мозаика, из отдельных кусочков и изображение получается неясным, расплывчатым. Зато сложные глаза насекомых позволяют «решать такие задачи», о которых мы не можем и помышлять.К примеру, разберем, как пользуется своими глазами пчела. Ее сложные выпуклые глаза состоят каждый примерно из четырех тысяч элементарных глазков, и отдельные детали предметов, особенно издали, она видит в сто раз хуже, чем человек. Долгое время вообще сомневались, могут ли пчелы различать форму предметов. Оказалось, что могут, но плохо. Они путают круг с эллипсом, треугольник с квадратом и лучше всего различают фигуры с изрезанным контуром, причем, чем больше периметр фигуры, тем более привлекательной она кажется для пчел. Это установили пищевой дрессировкой, пользуясь приманкой — медом.Так же изучали цветовое зрение пчел. Выяснилось, что пчела не видит красного цвета и путает его с зеленым, серым и даже черным Она отчетливо различает только шесть цветов: желтый, сине-зеленый, синий, пурпурный, фиолетовый и ультрафиолетовый. Пчелиный пурпурный цвет — это, по-видимому, смесь желтых и ультрафиолетовых лучей; а каким кажется пчеле ультрафиолетовый цвет, мы не знаем, он невидим человеческим глазом.Такое цветовое зрение биологически обосновано. Пчела очень четко видит среди зеленой травы и листьев голубые, фиолетовые к пурпурные цветки. Белые цветки имеют для нее множество оттенков в зависимости от количества отраженных ультрафиолетовых лучей. Цветы, которые мы считаем красными — гвоздика, герань, — для пчелы не красные, а пурпурные, и она их хорошо видит. В настоящий красный цвет среди наших цветов окрашены только маки и пчела их находит потому, что они отражают ультрафиолетовый свет.О том, что такое ультрафиолетовый свет, мы можем судить только косвенно, воспользовавшись фотопленкой, чувствительной к ультрафиолетовым лучам. Вот что пишут по этому поводу американские ученые Л. Д. Милн и М. Милн: «Например, обыкновенная желтая маргаритка поглощает ультрафиолетовые лучи; исключение составляют кончики лепестков, которые интенсивно их отражают В итоге насекомые воспринимают цветок в виде венчика ярких ультрафиолетовых пятен. Необычно выглядят в ультрафиолетовом свете некоторые насекомые. И самец и самка мотылька сатурния-луна кажутся нам пастельно-зелеными. Однако в ультрафиолетовом свете она выглядит как блондинка, а он как брюнет».Значительно лучше, чем мы, пчела видит движение. У человека изображение сливается при смене 24 кадров в секунду, а у пчелы при 300. Значит, в тех случаях, когда человек увидит только промелькнувшую тень, пчела будет отчетливо видеть движущийся предмет.Сложные глаза пчел позволяют им определять скорость полета по отношению к земле. Сейчас ученые создали прибор, определяющий скорость полета самолета. Устроен он так: на носу и хвосте самолета установлены два чувствительных к свету элемента. Особый электронный счетчик засекает время, в течение которого светлый или темный участок поверхности земли перемещается от одного элемента до другого. Расчет производится автоматически, и на шкале прибора можно прочесть скорость самолета в километрах в час. Так работает и глаз пчелы: ее мозг засекает время, за которое переместится изображение какого-то участка земли от одного края ее глаза до другого. Это очень важно для пчелы: зная скорость полета, она может определить расстояние, которое пролетит, а также сделать поправку на снос ветром.Обычно в ясную погоду пчелы находят дорогу к улью по солнцу. А как же они ориентируются в пасмурную погоду, когда солнца не видно?Здесь пчелу опять-таки выручают сложные глаза, которые воспринимают поляризованный свет. Человек не отличает поляризованный свет от обычного, а для пчелы он совсем другой. Если на небе есть хоть маленький голубой просвет, то от него к земле идут поляризованные лучи, причем плоскость поляризации зависит от положения синего окошечка по отношению к солнцу. Это дает возможность пчеле определить местоположение солнца, спрятавшегося за облаками, а значит, и направление.Среди водных насекомых, пожалуй, самые интересные глаза у жуков-вертячек. Эти жуки то скользят по поверхности воды, то ныряют глубоко под воду. У них как бы четыре сложных глаза — два для того, чтобы видеть под водой, и два — над водой. Когда они носятся по поверхности воды, то два глаза смотрят вниз, а два — вверх. Широкий кругозор у десятиногих раков. Глаза у них сидят на стебельках и могут поворачиваться в разные стороны. Состоят они из множества фасеток, причем каждая отдельная фасетка воспринимает лишь лучи, падающие перпендикулярно к ее роговице. Через каждую рак видит только маленькую часть предмета. Отдельные изображения складываются как мозаика и дают полное, но туманное изображение предмета. Дальнозоркими раков не назовешь. В воде они не реагируют с расстояния полутора метров даже на крупные движущиеся предметы. Сухопутные ракообразные — краб-привидение, пальмовый вор — видят дальше. Они замечают добычу с расстояния нескольких метров.
У большинства наземных млекопитающих орган слуха состоит из наружного уха — раковины, слухового канала и барабанной перепонки, передающей звуковые волны внутреннему уху — улитке. Как далеко слышат различные млекопитающие, точно никто не знает. По-видимому, лишь немногие из них могут слышать лучше, чем человек. Особенно важно хорошо слышать ночным охотникам, ведь в темноте глаза — ненадежный помощник. Очень хорошо слышит лисица. Охотники, подражая писку мыши, приманивают ее с расстояния 150—200 шагов. Еще лучше слышат ночные хищники пустынь — барханный кот, маленькая пустынная лисичка-фенек. По шороху они издалека обнаруживают пробирающуюся в сухой траве мышь, ползущего по песку жука. В свою очередь, грызунам пустынь важно заранее услышать приближение врага, и они отлично улавливают малейшее сотрясение почвы под ногами хищника. Стоит слегка ударить по земле пальцем, и тушканчики, песчанки исчезают как тени. Очень чутко реагируют на звуки косули, кабаны — едва треснет под ногой сухая ветка, они настораживаются и пускаются наутек. Отлично слышат обезьяны, и особенно полуобезьяны. Лори, маки домовой разыскивают ночью насекомых, ориентируясь главным образом слухом. Домашняя кошка лучше, чем мы, слышит высокие звуки, например, писк мышей в подполье, но не обращает никакого внимания даже на громкий крик с расстояния двухсот метров. Жители подземелий — слепыш, крот — наоборот, не интересуются высокими звуками, но великолепно улавливают колебания почвы. Это и понятно, их добыча — черви, личинки — безгласна, и подземные охотники обнаруживают ее по вибрации земли и запаху.
Особенно хорошо слышат летучие мыши, их «лавры» много лет не давали покоя ученым. Было давно известно, что они могут великолепно находить дорогу в темных извилистых пещерах. Этим в 1794 году заинтересовался итальянский натуралист Лациаро Спалланцани. Он поймал несколько летучих мышей и залепил им воском глаза, но мыши продолжали порхать как ни в чем не бывало в самых темных помещениях. Затем он пометил их и выпустил на волю. Через четыре дня, зная, где они проводят день, он выловил меченых мышей и исследовал их желудки. Оказалось, что слепые мыши охотились ничуть не хуже, чем зрячие. Спалланцани продолжал опыты. Он лишал мышей осязания, покрывал их тело лаком, залеплял им ноздри, затыкал уши. И только в последнем случае мыши потеряли способность ориентироваться в темноте и стали совсем беспомощными. Тогда разрешить эту загадку Спалланцани не удалось. Некоторые ученые решили, что у мышей очень чувствительные крылья-перепонки и они, подлетая к препятствию, ощущают уплотнение воздуха, нагнанного их крыльями. Такая точка зрения просуществовала более ста лет.Только в 1942 году американский ученый Д. Г. Гриффин доказал, что летучие мыши в полете пользуются эхолокатором. Принцип его действия несложен. Как известно, звук в воздухе распространяется с определенной скоростью, встретив препятствие, отражается и с той же скоростью возвращается обратно. Узнав, через сколько времени звук вернется, можно определить расстояние до препятствия.В полете летучая мышь все время попискивает; писк очень тонкий, и ухо человека его обычно не улавливает. Мышь же своими огромными ушами великолепно слышит и свой писк и его отражение от различных предметов. Засекая время возвращения звука, она вовремя поворачивает и не натыкается не только на стены пещеры и ветви деревьев, но и на часто натянутую в комнате проволоку диаметром менее одного миллиметра.Эхолокацию летучие мыши используют и на охоте. При разведке они лишь изредка попискивают, но, попав в рой насекомых, начинают пищать со скоростью 250 сигналов в секунду. Опыты оказали, что за 15 минут охоты мышь может поймать 175 комаров (за каждые 6 секунд одного комара!). Этому трудно поверить, но опыты повторяли неоднократно — и результаты были очень сходными.Еще более сложные задачи решают рыбоядные летучие мыши, обитающие в Америке. Темной ночью они летают над самой поверхностью реки или озера и вдруг, окунув лапки в воду, поднимаются на воздух с рыбкой в когтях. Считают, что они тоже пользуются эхолокацией, улавливая писк, отраженный от рыбки, или, вернее, от ее крохотного плавательного пузыря, так как тело рыбы проницаемо для звука. Если это действительно так, то их уши должны быть еще чувствительнее, чем у насекомоядных летучих мышей; ведь при переходе звука из воздуха в воду теряется более 90% его энергии и столько же при обратном переходе из воды в воздух.Отличным слухом, несмотря на отсутствие ушных раковин, обладают водные млекопитающие. По наблюдениям биологов киты слышат шум гребных винтов парохода за несколько километров, а косатка обнаруживает котика по всплеску за 300 метров.Лучше всего изучен слух у дельфинов. Еще совсем недавно не знали, что они, как и летучие мыши, пользуются эхолокацией. Было только известно, что дельфины охотятся за рыбой днем и ночью и при этом в мутной воде, где видимость не превышает нескольких сантиметров. А пресноводные дельфины, живущие в очень мутных речных водах Индии и Китая, почти совсем слепы, но великолепно обходятся и без глаз.В 1955 году в одном американском океанографическом институте решили выяснить, как же они обнаруживают добычу. Сперва в пруд бесшумно опускали небольшую рыбку. Дельфин очень быстро ее обнаруживал. При этом, как установили при помощи особой звукозаписывающей аппаратуры, он все время поскрипывал и пощелкивал. В основном, дельфин издавал ультразвуки с частотой от 100 до 150 тысяч колебаний в секунду. В дальнейшем от лодки перпендикулярно берегу натянули сеть и рыбу потихоньку опускали, то с одной, то с другой стороны сети — дельфин безошибочно обходил сеть кратчайшим путем и схватывал рыбку. И хотя плавательный пузырь рыбки отражает совсем мало звуковых волн, дельфин сумел отличать слабое эхо, идущее от ее пузыря, от более мощных звуков, отраженных дном, поверхностью воды и другими предметами, находившимися в пруду.Значительно проще, чем у млекопитающих, устроен орган слуха у птиц. У них, за исключением сов, нет наружного уха, слуховой канал короче, а вместо сложной улитки имеется только слегка изогнутая трубочка. Тем не менее многие птицы отлично слышат.Особенно славятся тонкостью слуха совы; писк мыши они слышат более чем за десять метров и могут поймать ее не видя, ориентируясь только на слух. Слух помогает на охоте и другим хищным птицам. Известный орнитолог С. С. Туров описывает такой случай: «Однажды осенью мне пришлось охотиться на рябчиков, приманивая их звуком пищика, который подражает голосу рябчика. Спрятавшись за деревом, я просвистел один-два раза в пищик, и сразу же из-за дерева с легким шумом вынырнул ястреб-перепелятник и ударил меня в голову. Совершенно ясно, что он, желая схватить мнимого рябчика, ориентировался только слухом».Очень чуток глухарь. Если он не токует и сидит на дереве, к нему не удастся подобраться на выстрел даже в густом подлеске. Даже если глухарь занят лающей на него собакой, подходить надо очень осторожно: чуть треснет в стороне сучок — и лесной великан с грохотом поднимается на крыло.
* Гуахаро, или жиряк. Обитает в Южной Америке, в настоящее время охраняется. – В. П.
Недавно узнали, что у некоторых птиц есть эхолокаторы. В горах Центральной Америки живут родственники нашего козодоя — глаухаро*. Это шоколадно-коричневые птицы с размахом крыльев немного менее метра. Птенцов они выводят в глубоких темных пещерах и в них же проводят все светлое время суток. В сумерки глаухаро вылетают кормиться плодами пальм, причем в гнездовой период они за ночь не один раз возвращаются в пещеры кормить птенцов.Ученые заинтересовались, как же такие птицы в полной темноте пещер не натыкаются на стены и находят свои гнезда. Оказалось, что на лету они издают зондирующие звуки с частотой около 7000 колебаний в секунду и улавливают их отражение от стен пещеры.Сейчас этих интересных птиц осталось совсем мало. Их мясо, и особенно жир, очень ценятся местным населением, и на них беспощадно охотятся.На побережье и островах Индийского океана большими колониями селятся стрижи-саланганы. Это те самые птицы, гнезда которых в Юго-восточной Азии славятся как лучший деликатес. Они тоже гнездятся в пещерах, прикрепляя свои гнезда из слюны к отвесным стенам. Поражает ловкость, с которой они на огромной скорости пролетают через щели, едва превышающие размах их крыльев. Опыты показали, что у них тоже есть эхолокатор, работающий на верхней границе слышимых человеком звуков. Эхолокаторы обнаружены у некоторых воробьиных птиц, а также у сов, кроншнепа.Слуховой аппарат птиц обладает еще одной удивительной особенностью. Если присмотреться внимательней, то нетрудно заметить, что перья, расположенные вблизи ушных отверстий птиц, совсем иные, чем на остальных частях тела. Спереди и по бокам они редко опушены и могут перекрывать друг друга, а сзади плотные и жесткие и образуют как бы щиток. Редкие и мягкие перья — это фильтр, который ослабляет ненужные птицам звуки и, наоборот, усиливает полезные. Например, сова при охоте в дождливую и ветреную погоду может отстроиться от постороннего шума — падающих капель, шелеста листьев, глухого рокота хвойных деревьев (низкочастотные звуки) и настроить ухо только на прием мышиного писка (высокочастотные звуки). Как они располагают перья, чтобы улавливать звуки нужной частоты, пока неизвестно, здесь еще много предстоит поработать биологам. Плотные перья, нависающие сзади над ушными отверстиями, поглощают звуки, и, повернув щиток из перьев под тем или иным углом, птица может определить, в каком направлении находится источник звука.Совсем плохо слышат змеи. А так как они тихоходы, да и видят неважно, долгое время оставалось неясным, как же змеи находят и ловят добычу. Лишь недавно узнали, что глаза и уши, по крайней мере некоторым змеям, заменяет термолокатор. У них между глазом и ноздрей есть небольшие ямочки. Эти ямочки — чувствительные органы, воспринимающие тепловые лучи очень небольшой интенсивности. По некоторым данным гремучие змеи могут определять разницу температур с точностью до 0,002 градуса. А так как у мышей и сусликов температура выше, чем температура окружающей среды, а у лягушек ниже, то змея может обнаружить и тех и других по крайней мере за метр, а это более чем остаточно для успешной охоты. Следовательно, глаза и уши им совсем не обязательны. Кроме гремучих змей термолокаторы есть всех ямкоголовых змей и удавов. Изучив термолокаторы змей, инженеры сконструировали ряд приборов, позволяющих видеть и фотографировать в темноте.Большинство ящериц слышат плохо. Но и среди них есть свои чемпионы. В пустынях Средней Азии обитают маленькие ящерицы — ящурки. У них неважное зрение и обоняние, а слух отличный, и когда насекомое или личинка шевелятся в песке, раздается своеобразный шорох пересыпающихся песчинок. Ориентируясь по этому шороху, ящурка мгновенно обнаруживает и схватывает добычу. А. если под носом ящурки положить любимое блюдо — личинок — в пакетике из марли или бумаги, она их не обнаружит — звук будет не тот.Лягушки неплохо слышат звуки, возникающие в воздухе, но только те, которые имеют для них биологическое значение. Они слышат кваканье собрата в соседней луже и чутко реагируют на «шлепок» в воду испуганного соседа. Если подойти к берегу пруда и потревожить одну лягушку, то все ближайшие, как по команде, начнут прыгать в воду. С другой стороны, можно громко кричать, свистеть, стрелять из ружья, лягушки и не пошевелятся.О том, что рыбы слышат, знали давно. При ударе грома, выстреле, резком свистке парохода рыбешки выпрыгивают из воды и веером рассеиваются во все стороны. Стук по днищу или борту лодки, плеск весел тоже пугают рыбу, и она сразу же отходит в сторону. Особенно пугается шума амурская рыба толстолобик. Чуть ударишь веслом по воде — и находящиеся вблизи рыбы, как по команде, выпрыгивают из воды.Но бывает и наоборот: шум или звук не пугают, а привлекают рыбу. Рыболовы умело используют и «любознательность» и пугливость рыб. Опытные удильщики успешно ловят сомов «клочением» — то есть приманивают рыбу, ударяя по воде особой колотушкой, «квоком». Почему удары колотушки привлекают сомов, пока не установлено. Одни полагают, что сом принимает эти звуки за кваканье лягушки, другие считают, что удары «квока» похожи на призывные звуки сомих, а третьи думают, что бульканье «квока» напоминает сому всплеск рыбы, которой он всегда готов поживиться. Какое объяснение наиболее правильно, сказать трудно, но так или иначе, сом подходит на удары колотушки.Не безучастны к звукам и некоторые виды акул. Рыбаки Индонезии и Сенегала ухитряются приманивать их с помощью трещоток, изготовленных из скорлупы кокосовых орехов.Но чаще рыбаки используют звук или шум для того, чтобы пугать рыбу. Поставят, например, ряжевые сети и ударами шестов по воде загоняют в них рыбу. При ловле неводом часто пользуются звонком: опустят его в воду между крыльями снасти — и рыба, захваченная неводом, испугавшись непонятных звуков, забивается глубоко в мотню.Но чем же все-таки слышат рыбы, ведь у них нет наружного уха? Многочисленными опытами, поставленными в аквариуме, и внимательным наблюдением за рыбами в природной обстановке удалось установить, что звуки с частотой колебания от 16 до 13 000 в секунду они улавливают нижней частью слухового лабиринта, а механические и инфразвуковые колебания с частотами от 5 до 16 в секунду — боковой линией. Это канал, тянущийся вдоль всего туловища от головы до хвоста. В канале расположены чувствительные сосочки, соединенные с внешней средой малюсенькими отверстиями, находящимися в чешуйках, и нервами — с головным мозгом. Иногда боковая линия бывает прерывистой, а иногда, как, например, у сельдей, располагается на голове. Ультразвуки, по-видимому, ни одна рыба не воспринимает.Слуховой лабиринт у них расположен в углублении черепной коробки и соединен со слуховым нервом. В этом же лабиринте имеются и особые слуховые камешки — отолиты.Очень важно было выяснить, как далеко слышат рыбы. Оказалось, что угорь слышит в воде примерно так же, как человек в воздухе. Но рыба, вынутая из воды, глуха, ее органы не воспринимают колебания частиц воздуха.Известно, что на звуки, возникающие в воздухе, рыбы реагируют много слабее, чем на звуки, источник которых располагается непосредственно в воде. Это легко проверить. Как только заметите стайку резвящихся уклеек, или степенно плавающих у поверхности воды голавлей, или притаившуюся в зарослях щуку, отойдите в сторону и громко крикните. Рыбы не обратят на крик никакого внимания и будут плавать как ни в чем не бывало. Почему это происходит? Да потому, что звуковые волны плохо проникают в воду и почти полностью отражаются от ее поверхности. А теперь спуститесь к реке и на таком же расстоянии от рыб попробуйте под водой стукнуть камнем о камень. Рыбы немедленно юркнут в глубину и исчезнут из глаз. Объясняется это просто: звук распространяется в воде быстро и без всяких помех.При помощи боковой линии, или, как иногда говорят, «шестого органа чувств», рыбы улавливают даже самые незначительные водные колебания. Она помогает им определять силу и направление течения, чувствовать отраженные от подводных предметов токи воды, движение соседа в стае, волнение на поверхности воды, пользуясь «шестым чувством», рыбы могут плавать ночью в мутной оде, не наталкиваясь на камни, коряги и друг на друга. Боковая линия позволяет улавливать и те колебания, которые передаются воду извне — в результате сотрясения почвы, ударов по воде, взрывной волны. Поэтому опытные рыболовы остерегаются стучать лодке, ходят по берегу, не топая, но не опасаются громко разговаривать.Исключительно большую роль играет «шестое чувство» у хищных рыб во время охоты. Так, например, слепая щука не теряет ориентации в воде и безошибочно схватывает движущуюся рыбку. А у слепой щуки с разрушенной боковой линией способность ориентироваться пропадает, она натыкается на стенки бассейна и, даже очень голодная, не обращает никакого внимания на плавающую вблизи рыбку.Мирным рыбам боковая линия тоже не лишняя — она помогает вовремя обнаруживать врагов. С ее помощью они отличают колебания, которые создают хищные рыбы, от колебаний, создаваемых собратьями. Рыбы отлично «понимают», что движение помогает хищнику их обнаружить, и поэтому ночами мелкие рыбки стоят спокойно.Мореплаватели не отказались бы иметь прибор, подобный боковой линии рыб. Если соединить такой прибор с автоматическим управлением корабля, то можно было бы плавать среди рифов и мелей без лоцмана и рулевого, не опасаясь посадить корабль на мель или получить пробоину.Предполагают, что некоторые рыбы — акула, белуга, морской конек — пользуются эхолокацией. Пока это еще не доказано, но радары — приборы, использующие не звуковые, а электромагнитные волны, — у некоторых рыб имеются.