Полет ракеты для доставки спутника на его орбиту во многом похож на полет обычных высотных или дальних ракет, описанных выше, в главе 6. Но полет на орбиту — не только полет на гораздо большую высоту и с гораздо большей скоростью, — он имеет и одно принципиальное отличие. Если обычные ракеты разгоняются двигателем лишь при взлете, один-единственный раз, а весь остальной полет совершают с выключенным двигателем, то запустить спутник таким образом невозможно. Чтобы создать искусственный спутник Земли, двигатель его ракеты должен работать обязательно дважды — один раз при взлете с Земли, другой — уже на орбите спутника, чтобы разогнать его до нужной орбитальной скорости.
При запуске советских искусственных спутников ракета стартовала вертикально, так же, как стартуют и высотные ракеты. На некоторой высоте ось ракеты стала отклоняться от вертикали под действием органов ее управления, работавших по определенной, заранее заданной программе. Ракета стала лететь под углом к горизонту, в общем направлении на северо-восток, причем двигатель ракеты разогнал ее до скорости, необходимой для достижения нужной орбитальной высоты. Вслед за тем ракета продолжала полет уже с неработающим двигателем; за счет накопленной при разгоне скорости она по-прежнему набирала высоту. Траекторией такого безмоторного полета, своеобразного «дрейфа» в мировом пространстве, был эллипс. Наконец на высоте в несколько сот километров ракета стала лететь почти горизонтально, параллельно земной поверхности, достигнув высоты заданной орбиты спутника. Вот теперь снова понадобилась помощь двигателя ракеты, чтобы разогнать ее до нужной орбитальной скорости; как уже указывалось выше, эта скорость несколько превышала круговую на данной высоте, она равнялась примерно 8 километрам в секунду.
К моменту, когда ракета, точнее — последняя ее ступень, достигла заданной высоты и скорости полета, все топливо на ней было выработано и двигатель снова прекратил работу, теперь уже навсегда, вслед за чем был сброшен защитный конус (носок) ракеты. При запуске второго спутника, которым служила последняя ступень ракеты, этим дело и ограничилось. Когда же запускался первый спутник, то после сбрасывания защитного конуса шаровидный спутник, находившийся в передней части ракеты, был вытолкнут из нее специальным устройством с небольшой скоростью. Примерно так же обстояло дело и при запуске третьего спутника, как это показано на рисунке.
Так как все перечисленные заключительные операции производились в то время, когда последняя ступень ракеты уже летела по орбите с нужной орбитальной скоростью, то Земля сразу получала по нескольку «спутников». В их числе были собственно спутник, ракета-носитель (при запуске первого и третьего спутников) и части защитного конуса. Однако дальнейшая судьба этих «спутников» оказалась различной.
Ракета, с помощью которой были запущены спутники, состояла, как указывалось выше, из нескольких ступеней. Они по очереди отделялись и падали на Землю по мере того, как на каждой ступени вырабатывалось все топливо.
В качестве примера, иллюстрирующего полет такой составной ракеты, можно привести опубликованные расчетные данные запуска трехступенчатой ракеты «Авангард», о которой выше уже упоминалось.
Первая ступень ракеты за 114 секунд работы жидкостного ракетного двигателя, развивающего тягу более 12 тонн, поднимает всю ракету на высоту 58 километров и сообщает ей скорость 1680 метров в секунду. Затем первая ступень (длина ее 13,5 метра при общей длине всей ракеты примерно 22 метра) отделяется и падает на Землю на расстоянии примерно 450 километров от места старта. В момент отделения запускается жидкостный ракетный двигатель второй ступени, имеющей длину примерно 9,5 метра и диаметр 81 сантиметр. Двигатель второй ступени увеличивает высоту полета ракеты до 210 километров и скорость до 4900 метров в секунду.
После остановки двигателя второй ступени из-за выработки всего запасенного на ней топлива ее тоже следовало бы отделить — ведь она теперь только мешает. Однако на самом деле вторая ступень не будет отделена, она будет продолжать полет вместе с третьей ступенью вплоть до достижения высоты орбиты. Это объясняется тем, что на второй ступени находятся все приборы управления полетом ракеты. Установить их на небольшой третьей ступени оказалось невозможным — слишком мала последняя ступень ракеты «Авангард». Конечно, на ракете больших размеров можно было бы все сделать иначе.
Ракета с неработающим двигателем продолжает полет до высоты примерно 480 километров. Управление полетом ракеты на этом участке осуществляется с помощью небольших ракетных двигателей, струи газов из которых вытекают в боковом направлении. Одновременно третья ступень с установленным на ней спутником раскручивается вокруг своей оси с тем, чтобы потом, после отделения второй ступени, вращение третьей ступени обеспечивало устойчивость ее в полете.
Когда ракета достигает заданной высоты (480 километров), вторая ступень отделяется и падает (вероятно, в Атлантический океан). Включается пороховой ракетный двигатель последней, третьей ступени, который разгоняет эту ступень вместе с установленным на ней спутником до заданной круговой скорости. Защитный носок ракеты, закрывающий спутник, сбрасывается, и спутник выталкивается из ракеты-носителя.
После запуска спутник начинает неутомимо накручивать на старушку Землю бесконечные витки своих спиралеобразных орбит.
Но почему спиралеобразных? Ведь орбиты спутников — это гигантские эллипсы. При чем же здесь спираль?
Действительно, орбиты советских спутников очень близки к эллипсам и в первом приближении могут быть приняты за эти геометрические фигуры. Относительно звезд их эллиптические орбиты остаются почти неподвижными.[45] Но ведь сама Земля вращается вокруг своей оси, и, очевидно, над земной поверхностью спутники будут двигаться по какой-то сложной кривой. Если бы Земля не вращалась, то спутники проходили бы все время над одними и теми же географическими пунктами. Из-за вращения Земли советские спутники видны из самых различных мест на земной поверхности, лежащих между северным и южным полярными кругами. Если соединить на карте те города, над которыми проходили спутники в соответствии с их абсолютно безошибочными «расписаниями», публиковавшимися в советских газетах, то получатся какие-то странные зигзагообразные линии. Но в действительности трассы спутников на земной поверхности представляют собой очень плавные кривые, похожие на так называемые синусоиды. Вблизи экватора широта спутника над Землей меняется быстро, его трасса наклонена под большими углами к меридианам. Чем дальше от экватора, тем меньше этот угол, пока, наконец, кривая трассы не касается 65-й параллели и не поворачивает назад, снова к экватору.
Так как Земля совершает один оборот вокруг своей оси за 24 часа, а спутник один оборот вокруг Земли — примерно за 1? часа, то за сутки спутник успевает обежать вокруг Земли примерно 16 раз. Это значит, что он «прочертит» на земной поверхности 16 витков своей спиралеобразной трассы. Каждый следующий виток смещен на запад по отношению к предыдущему на 24° по долготе. Это составляет примерно 2500 километров в экваториальной области и примерно 1500 километров на широте Москвы. Вот на такое расстояние и должен был бы перенестись за полтора часа наблюдатель (как видно, тут потребовался бы реактивный самолет!), если бы он снова захотел оказаться как раз под спутником.
Конечно, эти расчеты приближенны. Чтобы точно установить, над каким местом земной поверхности будет проходить спутник в заданное время, нужно учесть и то, что скорость движения спутника по его орбите не остается постоянной, и то, что положение самой орбиты в пространстве, то есть по отношению к звездам, тоже не остается неизменным: плоскость орбиты, оказывается, медленно поворачивается вокруг полярной оси земного шара (так называемая прецессия орбиты). Все это и учитывается, когда составляется точное «расписание» движения спутников.
К сожалению, увидеть спутник, даже если он проходит над самой головой, можно далеко не всегда. Дело тут, конечно, вовсе не в одной только облачности. Даже когда небо абсолютно чистое, мы можем видеть быстро пересекающую его искусственную звездочку лишь в определенные моменты: утром — до восхода солнца и вечером — после его захода. Днем тоненький лучик, идущий к нашему глазу от искусственного спутника, затеряется в массе солнечных лучей — спутник будет невидим. Невидим он будет и ночью — ведь спутник сам не светится, он лишь отражает падающие на него солнечные лучи, а ночью спутник оказывается в огромном конусе тени, отбрасываемой земным шаром. Только утром и вечером, когда на небосводе солнца не видно, а мчащийся на высоте в сотни километров спутник освещен его горячими лучами, можно стать свидетелем незабываемого зрелища — увидеть искусственную звезду, мчащуюся среди мерцающих неподвижных звезд небосвода.[46]
Правда, первый советский спутник можно было видеть лишь с помощью сильного бинокля или подзорной трубы — это была слабая звездочка примерно пятой или шестой звездной величины. Зато ракеты-носители этого и третьего спутников, а также второй и третий спутники, имеющие гораздо большие размеры, были отчетливо видны как яркие желтоватые звезды, стремительно движущиеся по небу. На всех континентах, во всех странах люди следили за этими посланцами человечества в Космос, за этими «филиалами» Земли в небе.
Во многих случаях можно было видеть, как пролетавшая в небе искусственная звезда довольно резко меняла свой блеск, становилась более или менее яркой. Это было связано с тем, что ракета-носитель первого спутника, второй и третий спутники, которые имели несимметричную геометрическую форму, меняли свою освещенность в результате вращения вокруг центра тяжести. Значит, искусственные спутники обладали и этим движением, свойственным спутникам природным.
Научное значение первых искусственных спутников Земли поистине неоценимо. Не только астронавтика, но и многие «земные» науки сделают гигантский шаг вперед, опираясь на результаты наблюдений, произведенных с помощью спутников. Можно не сомневаться, что, несмотря на свои относительно небольшие размеры, спутники оправдают очень большие надежды ученых. Вот уж действительно — мал золотник, да дорог! Понятно, почему так велико научное значение первых спутников Земли. Ведь только они позволили ученым впервые перенести приборы с Земли на другое небесное тело. Это неизмеримо расширило возможности научных исследований, позволило осуществить научные наблюдения, принципиально не осуществимые с Земли.
И, пожалуй, самым первым по научному значению из всех приборов первого советского спутника следовало бы назвать прибор, который на этом спутнике вовсе не установлен! Ничего удивительного в этом нет, ибо речь идет о приборе, которым является… сам спутник, само это крошечное небесное тело, созданное советскими людьми.
Для науки чрезвычайно ценно уже одно только то, что в небе появились другие небесные тела, другие спутники Земли, помимо извечного ее спутника — Луны. Но еще более ценно то, что эти новые спутники во многом отличны от Луны, что они имеют несравненно меньшие размеры, чем Луна, обращаются вокруг Земли на несравненно меньших расстояниях и имеют соответственно меньший период обращения. Вследствие этих отличий на движении искусственных спутников, которое подчиняется, естественно, тем же законам, что и движение Луны, будут сильно сказываться многие факторы, практически не сказывающиеся на движении Луны. Будет сказываться, конечно, и то очень важное обстоятельство, что искусственные спутники движутся в иной плоскости вокруг Земли, чем плоскость движения Луны.
Вот почему искусственные спутники и являются очень ценными научными приборами. Изучая особенности их движения, можно сделать научные выводы большой важности. Так, например, неизмеримо сильнее, чем на движении Луны, будут сказываться на спутниках такие особенности Земли, как ее сплющенность, то есть отличие от правильной геометрической формы шара, (истинная форма земного шара — геоид — близка к эллипсоиду вращения), или же неоднородность ее строения, то есть неравномерное размещение масс внутри земной коры. Из-за этих особенностей Земли орбита искусственного спутника не будет точно круговой или эллиптической, она будет, как говорят, искажена. Кроме того, она не будет занимать фиксированного положения в пространстве (не будет перемещаться параллельно самой себе), а будет вращаться по сложным законам. Естественно, что по этим причинам будет изменяться и скорость движения спутника по орбите.
Значит, точно измеряя эти, как их называют, возмущения орбиты искусственного спутника, можно судить о вызывающих их причинах. Таким методом можно, например, определить точную форму или, как говорят, фигуру Земли, проверив заодно и другие, используемые в настоящее время методы. Этим будет оказана большая помощь геодезии — науке об измерении Земли и картографии — карты станут более точными. В частности, можно будет гораздо точнее, чем теперь, установить расстояние между земными материками и, наконец, выяснить, действительно ли перемещаются материки, как это предполагается некоторыми учеными, и если да, то как именно. Или, например, можно будет судить о неравномерностях строения земной коры, что может принести большую пользу геологии. В частности, с помощью таких гравиметрических наблюдений (то есть наблюдений за изменением силы тяжести в разных точках земной поверхности) могут быть обнаружены новые месторождения полезных ископаемых.
Наблюдая за орбитой искусственного спутника, можно сделать и еще один вывод, имеющий огромное значение для науки. Особенно важен этот вывод, в частности, потому, что никаким другим способом наука пока получить его не в состоянии. Речь идет об определении плотности воздуха в верхних слоях атмосферы, на границе ее с мировым пространством. Это конечно, имеет далеко не один только академический интерес. На такие огромные высоты уже забираются автоматические ракеты; за первыми спутниками появятся и другие, на разных высотах; недалеко то время, когда там будут летать и люди. А ведь впереди — межпланетный полет, при котором, конечно, корабль должен пересечь всю атмосферу, снизу доверху. И для всего этого совершенно необходимо точное знание плотности и других свойств атмосферы на всем ее протяжении — иначе нельзя точно рассчитать полет, а без такого расчета нельзя быть до конца уверенным в его успехе.
Но как же можно узнать с помощью спутника, какова плотность тех крайне разреженных слоев атмосферы, в которых он движется? Должны ли для этого находиться на спутнике какие-нибудь приборы, измеряющие плотность воздуха и сообщающие результаты своих измерений на землю?
Нет, необходимости в таких приборах в этом случае, к счастью, нет.[47] Задача может быть решена и без них. Для этого, как указывалось выше, требуются лишь тщательные наблюдения за движением спутника: он сам снова становится измерительным прибором. Все дело в том сопротивлении, которое оказывает спутнику воздух, в котором он движется.
Как известно, воздух оказывает сопротивление всякому движущемуся в нем телу. Это так называемое аэродинамическое сопротивление зависит от плотности воздуха, оно тем больше, чем больше эта плотность. Конечно, спутники движутся в самых верхних, крайне разреженных слоях атмосферы, где плотность ничтожно мала, но все же и этот воздух оказывает сопротивление движению спутника, правда, сопротивление очень небольшое. Измеряя это сопротивление, можно довольно точно определить плотность земной атмосферы на огромных высотах.