Но разве возможно измерить аэродинамическое сопротивление спутника в его полете по орбите? На первый взгляд это представляется еще гораздо более трудной задачей, чем непосредственное измерение плотности воздуха. Ведь для измерения этого сопротивления при испытаниях самолетов или их моделей в аэродинамических трубах служат специальные высокоточные аэродинамические весы, самописцы и другие приборы. Что же заменит их в данном случае?
Вот тут-то и появляется на сцену сам спутник как высокочувствительный измерительный прибор. Дело в том, что орбита спутника очень чутко реагирует на его скорость, даже ничтожное изменение скорости ощутительно изменяет орбиту. Поэтому точные измерения орбиты позволяют судить об изменении скорости движения спутника, а значит, и о величине воздушного сопротивления, которая, как указывалось выше, прямо пропорциональна плотности воздуха.
Кстати, в значительной мере именно из-за этого использования аэродинамического сопротивления спутника для определения плотности атмосферы в ее верхних слоях первому советскому спутнику была придана шаровая форма. Аэродинамическое сопротивление шара изучено лучше, чем других тел. Кроме того, как бы шар ни вертелся в полете, он все равно остается шаром. А представьте себе спутник в виде цилиндра. Летит такой цилиндр вокруг Земли и при этом поворачивается то одним боком, то другим. Ведь так и обстояло дело, например, со вторым советским спутником, яркость которого, как и яркость ракеты-носителя первого спутника, менялась в полете. Но понятно, что каждому положению цилиндра будет соответствовать свое сопротивление. Как же тут разобраться, какова истинная величина этого сопротивления, чтобы по ней определить плотность воздуха? Тут можно сильно ошибиться…
Как же должно влиять на орбиту искусственного спутника сопротивление атмосферы? Хорошо известно, что сопротивление воздуха мешает полету самолета, тормозит его. Если бы на самолете не было двигателя, то скорость его полета под действием этого сопротивления непрерывно уменьшалась бы. Значит, и скорость спутника должна постепенно уменьшаться, ведь на спутнике нет двигателя, который мог бы восстановить потерю скорости. Но в действительности скорость спутника, как показали наблюдения за первыми советскими спутниками, не только не уменьшается, а непрерывно возрастает!
Чем же объяснить этот парадокс, это кажущееся противоречие?
Оно объясняется тем, что, как и следовало ожидать, все-таки существует «двигатель», вызывающий этот неожиданный рост скорости спутника. Таким двигателем является Земля, сила ее тяготения. Как только скорость спутника под влиянием воздушного сопротивления оказывается меньшей, чем это требуется для полета по данной орбите, он под действием притяжения к Земле начинает двигаться по другой орбите. Новая орбита отличается от исходной, главным образом, высотой своего апогея — она уменьшается; высота перигея тоже уменьшается, но неизмеримо медленнее. Значит, эллипс становится менее вытянутым, он приближается к кругу. Средняя же скорость спутника по всей орбите не только не уменьшается, но даже возрастает — сказывается снижение спутника, его падение в поле земного тяготения (в то же время максимальная скорость спутника, то есть его скорость в перигее, при таком торможении спутника уменьшается, что очень важно для посадки межпланетного корабля, о которой будет идти речь в главе 17).
Чем сильнее влияет воздушное сопротивление на движение спутника, тем значительнее его снижение и больше рост средней скорости движения. В итоге же уменьшается период обращения спутника вокруг Земли — и потому, что уменьшается проходимый за каждое обращение путь, и потому, что свой путь спутник проходит с большей скоростью. Наблюдая за тем, как уменьшается период обращения спутника, можно судить о величине воздушного сопротивления и, значит, о плотности воздуха на тех высотах, где движется спутник.
Именно из-за воздушного сопротивления оказалась различной судьба первого советского спутника и его ракеты-носителя. Вначале, когда спутник был вытолкнут из ракеты-носителя, он ушел вперед километров на тысячу. Однако потом, под действием воздушного сопротивления, значительно большего для ракеты-носителя[48] ракета начала постепенно нагонять спутник. Примерно через 5 дней она уже догнала спутник и стала все быстрее удаляться от него, приближаясь вместе с тем к Земле. Когда спутник совершил 500 оборотов вокруг Земли, то ракета-носитель обогнала его уже на целых два оборота, совершив за это же время 502 оборота. 2 декабря 1957 года ракета-носитель обогнала спутник уже на 12 оборотов — она сделала 900 оборотов, тогда как спутник — 888 оборотов вокруг Земли. Вслед за этим ракета-носитель вошла в наиболее плотные слои атмосферы и через два месяца после запуска перестала существовать — отдельные оплавленные части ее упали на территории Аляски и западного побережья США. Спутник же по-прежнему продолжал полет вокруг земного шара и 9 декабря завершил 1000-й оборот вокруг него, пройдя путь в 43,2 миллиона километров. Он прекратил свое существование примерно через месяц после гибели ракеты-носителя, 4 января 1958 года, совершив за 3 месяца 1400 оборотов вокруг Земли и пройдя путь около 60 миллионов километров.
Падение спутника сквозь наиболее плотные нижние слои атмосферы, когда он из-за аэродинамического нагрева раскаляется докрасна, превращаясь в болид, разрушаясь и частично испаряясь, представляет исключительно большой интерес для науки. Ведь недалек тот момент, когда не только искусственные спутники совершат посадку на Землю, но и отправится в полет первый межпланетный корабль с людьми на борту, а он, естественно, должен совершить безопасную посадку при возвращении на Землю. Вот почему так важны наблюдения за спутником в последние часы его существования: наука извлекает пользу и из самой гибели созданного людьми искусственного небесного тела. К сожалению, эта задача очень сложна, и до сих пор тщательно проследить за падением спутников не удалось.
Понятно, что для всех наблюдений, связанных с измерениями орбиты спутника, эти измерения должны быть очень точными. Но даже при наличии подобных измерений получение нужных результатов весьма не простое дело. Так, например, задача определения плотности воздуха на больших высотах по скорости снижения спутника гораздо сложнее, чем описано выше. Ведь при этом приходится учитывать, что причиной снижения спутника может быть не только воздушное сопротивление, но и другие явления, например так называемое приливное действие Земли. Необходимо считаться также с давлением солнечных лучей на спутник. Примерный расчет показывает, что при круговой орбите на высоте 500 километров это давление примерно сравнивается по величине с аэродинамическим сопротивлением, оказываемым спутнику разреженной атмосферой, в которой он движется. Давление солнечного излучения может тормозить спутник, а может и создавать небольшую движущую силу — в зависимости от того, как избрана орбита спутника. По проекту, разработанному во Франции, использование солнечного давления на небольшой искусственный спутник с такой высотой круговой орбиты может полностью компенсировать различные тормозящие действия на спутник и, следовательно, сделать продолжительность жизни спутника практически неограниченной. Конечно, создать подобный «тысячелетний» спутник можно и простым увеличением высоты орбиты.
Чтобы точно установить закон движения спутника по орбите, необходимы тщательные определения положения спутника на небе в каждый данный момент. Наблюдению за движением спутников у нас в стране уделено большое внимание. Основная роль при этом возложена на специальные станции наблюдения, организованные в разных пунктах страны. Станции снабжены специальными телескопическими широкоугольными трубками, с помощью которых создаются «оптические барьеры» на небе. Трубки располагаются по прямой перпендикулярно ожидаемому направлению полета спутника, а иногда также и по меридиану. Момент пересечения спутником этой невидимой прямой, фиксируемый одним из наблюдателей, отмечается с помощью точных часов. Чтобы облегчить такие же наблюдения, ведущиеся многими астрономами-любителями, по радио каждый час передаются сигналы точного времени.
Исключительно большое значение имеют фотографические наблюдения за спутниками, доступные не только специальным обсерваториям, но и каждому любителю, обладающему фотоаппаратом. Четкие снимки пролетающего спутника в виде яркой полоски, пересекающей небо, с отметкой времени пролета (например, путем разрыва этой полоски перекрыванием объектива) могут принести особенно большую пользу.
Но, конечно, ограничиться только оптическими наблюдениями нельзя. Ведь большую часть суток пролетающий в небе спутник невидим. Поэтому очень важны радиолокационные наблюдения, осуществляемые с помощью особых, весьма сложных установок, так называемых радиолокационных телескопов.
Однако подобные установки еще весьма немногочисленны. Вот почему важно было создать спутник не «пассивный», а «активный», способный передавать на Землю и сообщения о своем местонахождении на небе, и, если можно, другие важные сведения. Как известно, уже первый советский спутник был именно «активным» спутником.
На первом советском спутнике были установлены две передающие радиостанции, работавшие на волнах длиной 7,5 и 15 метров. Вот почему этот спутник был снабжен двумя парами усов-антенн длиной 2,4–2,9 метра. На нем были установлены также и источники электрического тока, необходимые для работы радиостанций. В течение трех недель весь мир слушал сигналы этих станций. Их удавалось принимать на расстоянии до 10 тысяч километров от спутника.
Работа радиостанций на спутнике имела огромное значение и для изучения электрического потолка земной атмосферы — ионосферы. Ведь до сих пор ее изучение осуществлялось с помощью радиоволн, которые излучались с поверхности Земли и отражались различными слоями ионосферы; по характеру этого отражения можно было судить о свойствах ионосферы. Самые отдаленные слои ионосферы удавалось «прощупывать» таким образом лишь с трудом, а может быть, и вовсе не удавалось — по существу, не было известно, где находится верхняя граница ионосферы. Спутник дал возможность посылать радиосигналы из разных точек ионосферы и из областей, лежащих выше нее.
Ценность радиозондирования ионосферы значительно увеличивалась тем, что спутник излучал радиоволны двух различных частот. Накопленные за время работы раций первого спутника сведения, а также сведения, полученные в результате запуска второго и третьего спутников, будут подвергнуты тщательному изучению и помогут не только установить свойства ионосферы, но и улучшить на этой основе дальнюю радиосвязь. Они будут иметь также большое значение при решении проблем радиосвязи с будущими межпланетными кораблями. Еще большее значение для этой цели имеет, конечно, ценнейший опыт, полученный при приеме сигналов радиостанций первой советской космической ракеты, ставшей спутником Солнца. Ведь это были сигналы первого настоящего межпланетного корабля!
При приеме на слух посылаемые первым спутником радиосигналы казались совершенно одинаковыми короткими звуками «пип-пип» (посылаемые спутником сигналы имели вид телеграфных посылок длительностью 0,3 секунды с паузами такой же продолжительности). Однако в действительности чередующиеся с паузами посылки были вовсе не одинаковы. Иногда они становились длиннее, иногда короче. Это вызывалось тем, что на основные сигналы постоянной частоты и длительности накладывались другие сигналы — зашифрованные показания установленных на спутнике приборов.
Принятые земными наблюдательными станциями сигналы спутника записывались и затем расшифровывались. Такая система передачи показаний приборов называется радиотелеметрической. С ее помощью регистрировались, в частности, давление и температура азота, заполняющего шаровидный спутник.
Но зачем же в спутнике находился азот?
Прежде всего, он создавал давление внутри герметического шара-спутника. Легко видеть, что это необходимо и для работы приборов спутника, и для уменьшения толщины его стенок. Но не менее важна и вторая роль азота: она связана с регулированием температурного режима спутника.
Двигаясь по своей орбите, спутник то нагревался палящими лучами Солнца, то замерзал, когда для него наступало «солнечное затмение», то есть когда он попадал в конус земной тени. Температура спутника при таких переходах может измениться более чем на 200–250 °C. Может быть, это было бы и не страшно для металлического шара, но заведомо недопустимо для различного научного оборудования, размещенного внутри шара. Поэтому возникла острая необходимость регулировать температуру спутника.
Задача эта оказалась очень нелегкой и, главное, совершенно новой — ведь еще никому до сих пор не приходилось регулировать температуру какого-нибудь… небесного тела. А спутник является как раз именно таким телом, его температура определяется лучистым теплообменом с окружающим пространством. Поэтому поверхности спутника были приданы определенные свойства в отношении поглощения и излучения лучистого тепла. Но этого мало. При тепловых расчетах спутника приходилось учитывать и выделение тепла внутри него, как это имеет место, допустим, внутри земного шара. Только Земля подогревается изнутри теплом радиоактивного распада калия, урана и других веществ, а спутник — теплом, выделяющимся в результате работы установленного на нем научного оборудования и радиостанций.
Продолжая эту аналогию между Землей и нашим искусственным спутником, можно было бы указать и еще некоторые сходства и различия. Так, в отличие от Земли, мчащейся в безвоздушном пространстве, спутник движется в земной атмосфере, хоть и очень разреженной. Это заставляет учитывать и некоторое количество тепла, которое спутник получает в результате трения о воздух. С другой стороны, Земля обладает замечательным механизмом для выравнивания температуры по всей ее поверхности — атмосферой. Такой атмосферы спутник лишен. Впрочем, почему лишен?
Вот тут-то мы и встречаемся со второй функцией азота, заполняющего спутник. Если нельзя создать атмосферу, окружающую спутник, то почему бы не устроить ее… внутри спутника? Ведь подобная атмосфера тоже может выравнивать температуру на спутнике. И вот наш спутник приобретает азотную «атмосферу». Но если мы еще пока не в силах управлять ветрами в земной атмосфере и только мечтаем об этом, то никто не мешает нам организовать «ветры» в азотной атмосфере спутника наилучшим образом, чтобы приборы внутри спутника находились в наиболее благоприятных условиях. Вот почему азот в спутнике циркулирует по заданным путям с помощью специальных устройств. Это тоже была нелегкая задача.
Глядя на модель первого советского спутника — блестящий металлический шарик с усами антенн, — впервые показанную на Всесоюзной промышленной выставке, не просто было представить себе все трудности, которые пришлось преодолеть при его создании, все проблемы, которые пришлось решить. Но, конечно, самая большая, самая главная трудность заключалась в том, чтобы доставить этот скромный на вид и такой замечательный по существу шарик на его головокружительную орбиту. Для этого мало было даже создать невиданную, не существующую нигде за рубежом сверхвысотную ракету. Нужно было научиться управлять ракетой так, чтобы она прочертила в мировом пространстве точно предопределенный ей путь.