Кроветворение – это сложный, многостадийный процесс клеточных делений и дифференцировок, в результате которого образуются зрелые, функционально полноценные клетки крови.
Современная схема кроветворения описывает последовательность дифференцировок в кроветворной ткани, начиная от исходных клеточных звеньев и заканчивая не способными к пролиферации формами. Основным кроветворным органом является костный мозг.
Выделяют 5 классов клеток системы крови (А. И. Воробьев, Г. И. Козинец).
I класс (стволовые клетки). Эти клетки обладают способностью к дифференцировке и самоподдержанию. Класс стволовых клеток является гетерогенной клеточной популяцией, в которую входят разные по пролиферативному потенциалу клетки-предшественники. Считается, что в процесс дифференцировки стволовые клетки вступают стохастически, случайно. Для самоподдержания родоначальных клеток необходимо кроветворное микроокружение.
II класс. Ближайшими потомками родоначальных клеток являются полипотентные и бипотентные (коммитированные) клетки-предшественники, обладающие более низким дифференцировочным потенциалом, чем стволовые. Полипотентные клетки способны дифференцироваться в нескольких направлениях. Например, колониеобразующая мегакариоцито-эритроцитарная единица (КОЕ-ГЭММ-Т) дифференцируется в направлениях гранулопоэза, эритропоэза, мегакариоцитопоэза, макрофагопоэза и Т-лимфопоэза. Регуляция пролиферации и дифференциации на этом этапе кроветворения осуществляется гемопоэтическими факторами роста или колониестимулирующими факторами.
III класс – унипотентные клетки-предшественницы, дифференцирующиеся только в определенном направлении, например моноцитарного или какого-либо другого ряда. Морфологически клетки первых трех классов неразличимы.
IV и V классы – это классы морфологически распознаваемых клеток – бластных, созревающих и зрелых.
В нейтрофильном гранулоцитарном ряду созревание клеток связано с их делением. Миелобласты и промиелоциты делятся по одному разу, миелоциты – два раза. Второе деление миелоцита является завершающим, после чего клетки созревают без деления, последовательно превращаясь в метамиелоцит, палочкоядерный и сегментоядерный гранулоцит. Зрелые моноциты, в отличие от клеток гранулоцитарного ряда, способны к делению и могут превращаться в макрофаги. Все клетки эритроидного ряда, за исключением оксифильных нормоцитов, делятся, дифференцируясь. Оксифильные нормоциты превращаются в ретикулоциты в результате «выталкивания» ядра. Процесс кроветворения регулируется гемопоэтическими факторами роста или колониестимулирующими факторами (КСФ).
Приобретение коммитированности сопровождается появлением на поверхности клетки рецепторов, отвечающих на специфические сигналы различных регуляторов кроветворения. Соединение КСФ со специфическим рецептором на поверхности клетки вызывает сигнал, побуждающий клетку к дальнейшей дифференцировке по избранному пути до окончательной специализации. Помимо стимуляторов гемопоэза, существует система ингибиторов, участвующих в регуляции кроветворения.
Пункция костного мозга
Исследование костного мозга играет важную роль в диагностике различных заболеваний кроветворной системы, когда по клинической симптоматике и картине периферической крови установить природу патологического процесса не удается. Изучение характера костномозгового кроветворения, определение его функционального состояния и перестройки помогают разобраться в сложных диагностических ситуациях.
В настоящее время пункция грудины выполняется иглой Кассирского с предохранительным щитком. Щиток может быть установлен на любом расстоянии от грудины в зависимости от конституции и упитанности пациента. Вместо грудины можно пунктировать гребень подвздошной кости, а у детей – пяточную кость.
Пункцию грудины производят на уровне третьего-четвертого межреберья в области тела грудины или пунктируют рукоятку грудины. Анестезия 1–2 %-ным раствором новокаина в количестве 2–4 мл проводится послойно: кожа, подкожная клетчатка, надкостница. Время анестезии – 5–7 мин.
Иглу вводят быстрым движением строго по средней линии в костномозговой канал – при прохождении иглы через стенку грудины ощущается хруст. После извлечения мандрена на иглу насаживают шприц емкостью 10–20 мл, производят аспирацию костного мозга и выдувают его на парафинированное часовое стекло. Во избежание большой примеси крови в шприц целесообразно набирать как можно меньше костного мозга – 0,1–0,2 мл. Из пунктата костного мозга готовят мазки для подсчета миелограммы – количества миелокариоцитов, мегакариоцитов, ретикулоцитов и других клеток. Взятие костного мозга и приготовление мазков надо производить быстро, так как костный мозг сворачивается быстрее, чем периферическая кровь, и клетки становится невозможно дифференцировать. Для замедления свертывания пунктата костного мозга можно предварительно нанести на часовое стекло тонкий слой порошкообразного цитрата натрия.
В некоторых случаях материал получить не удается, несмотря на повторные насасывания шприцем. Причинами являются:
1) неправильное проведение пункции – плохо пригнан шприц и засасывается воздух, отверстие иглы закупорено кусочком кости или кожи, острие иглы не находится в костномозговом канале или упирается в заднюю пластинку кости;
2) гипоклеточный костномозговой пунктат – при постлучевой аплазии кроветворения, апластической анемии, идиопатическом миелофиброзе.
Нормальные величины
Общее количество ядерных элементов колеблется в широких пределах, очевидно, вследствие неодинакового состава костномозговой ткани в различных участках и примеси крови к пунктату.
У здоровых людей количество костномозговых клеток составляет 42-195 x 103 (А. И. Воробьев, 1985 г.), 80-150 x 103 (В. А. Бейер, 1967 г.) в 1 мкл.
Представленные нормативы имеют вероятность 86,6 %, т. е. показатели могут выходить за их пределы у 13,4 % здоровых людей.
Клиническое значение
Количество миелокариоцитов дает ориентировочное представление о клеточности костного мозга.
Повышение клеточности костного мозга имеет место у новорожденных, при острых и хронических лейкозах, истинной полицитемии, МДС, лейкемоидных реакциях, обусловленных инфекционными заболеваниями или злокачественными новообразованиями. Умеренное увеличение клеточности наблюдается после кровопотери, при гемолитических и В12-дефицитной анемии.
Уменьшение количества миелокариоцитов отмечено при старении, при одном из вариантов МДС – рефрактерной анемии, врожденной гипоплазии кроветворения (синдром Фанкони); при аплазии кроветворения в результате миелотоксического воздействия лекарственных препаратов (цитостатиков, анальгетиков, нестероидных противовоспалительных препаратов, антибиотиков, сульфаниламидных препаратов); при хронической интоксикации бензолом, воздействии ионизирующей радиации при метастазировании злокачественных новообразований в костный мозг, апластической анемии или миелофиброзе. Умеренное снижение количества ядерных клеток может быть при инфекционных заболеваниях, парциальной ночной гемоглобинурии.
Подсчет мегакариоцитов
Подсчет количества мегакариоцитов можно производить различными способами.
Подсчитывают число клеток в счетной камере Фукса – Розенталя. Количество мегакариоцитов определяют в 2–3 камерах и вычисляют среднее.
В мазках пунктата костного мозга при выведении миелограммы (подсчет не менее 500 клеток) отмечают процент мегакариоцитов. В норме должно быть от 5 до 13 мегакариоцитов в 250 полях зрения при просмотре мазков пунктата по В. А. Бейеру (1967 г.) или 5-12 на 250 полей зрения по Г. А. Алексееву (1959 г.).
Количество мегакариоцитов можно оценить ориентировочно, просматривая под малым увеличением микроскопа окрашенные мазки пунктата костного мозга. Мазок лучше покрыть тонким слоем иммерсионного масла, тогда мегакариоциты выглядят рельефнее. Количество мегакариоцитов оценивают по отношению к количеству всех ядерных клеток костного мозга.
Мегакариоциты – гигантские клетки костного мозга, они в 15–20 раз крупнее лейкоцитов, имеют диаметр 30–70 мкм, отчетливо видны под малым увеличением микроскопа, имеют интенсивно-фиолетовое многолопастное ядро, широкую зону цитоплазмы с зернистостью, в мазках располагаются неравномерно, сосредоточиваясь по краям препарата и в конце мазка. Отношение числа мегакариоцитов к общему количеству миелокариоцитов составляет менее 1 % (В. А. Бейер, 1967 г.), 0,04-0,4 % (И. А. Кассирский, 1948 г.); 0,1–0,2 % (Е. А. Кост, 1975 г.).
Все эти методы не являются достаточно точными. Наиболее достоверные сведения о количестве мегакариоцитов дает подсчет в срезе костного мозга, полученного при трепанобиопсии.
У здоровых людей количество мегакариоцитов составляет 63 ± 10 в 1 мкл. У детей в возрасте 5 месяцев – 3,5 года количество мегакариоцитов выше, чем у взрослых (116 ± 10,8 в 1 мкл пунктата).
Клиническое значение
Резкое увеличение количества мегакариоцитов в костном мозге является ранним признаком хронических миелопролиферативных заболеваний, особенно истинной полицитемии, а также хронического миелофиброза и миелолейкоза. Мегакариоцитоз костного мозга характерен также для идиопатической тромбоцитопенической пурпуры, иммунных тромбоцитопений, эссенциальной тромбоцитемии, может наблюдаться после кровопотери, при злокачественных новообразованиях, гигантских гемангиомах, циррозе печени с синдромом гиперспленизма.
Уменьшение числа мегакариоцитов характерно для апластической анемии, системных гиперпластических процессов (острых лейкозов, хронических лейкозов в терминальной стадии, лимфопролиферативных заболеваний), неходжкинских лимфом с поражением костного мозга, метастазов злокачественных опухолей в костный мозг.
Морфологический анализ клеток костного мозга с подсчетом миелограммы
Изучение миелограммы следует начинать с просмотра окра шенных препаратов под малым увеличением микроскопа. Это позволяет определить качество мазков, клеточность костного мозга, обнаружить групповые скопления атипичных клеток. После просмотра мазка под малым увеличением на него наносят каплю иммерсионного масла и под большим увеличением приступают к дифференцированию форменных элементов. Производят дифференцированный подсчет не менее 500 клеток костного мозга и вычисляют процент каждого вида клеток. Подсчет можно производить двумя способами. По методике Е. А. Кост (1952 г.) считают отдельно клетки лейкопоэза и эритропоэза. По методике Н. А. Аринкина считают подряд все клетки костного мозга и вычисляют процент каждого вида клеток (для этого необходимы две счетные машинки).Морфология клеток эритроидного ряда
Эритробласты являются морфологически различными родоначальными клетками элементов эритроидного ростка. Это большие круглые клетки диаметром 15–25 мкм или около 20 мкм и более, имеют большое овальное или круглое ядро, занимающее большую часть клетки, окрашивающееся в темный красно-фиолетовый цвет. Для ядра характерны нежное сплетение хроматиновых нитей, одна или несколько (до четырех) нуклеол, окрашивающихся в синий или темно-голубой цвет и подчас трудноразличимых. Цитоплазма имеет различные размеры, насыщенно-синий цвет с фиолетовым оттенком, с зоной просветления вокруг ядра в некоторых клетках. В миелограмме в норме содержится 0,2–1,1 % эритробластов.
Пронормоциты морфологически близки к эритробластам, но отличаются от них меньшей величиной (12–18 мкм), более грубой структурой ядра (видны большие участки оксихроматина) и отсутствием нуклеол. Форма клетки круглая или овальная. Цитоплазма значительной величины, базофильная, окрашивается в синий цвет. В миелограмме в норме содержится 0,1–1,2 % пронормоцитов.
При анализе пунктата костного мозга выделяют нормоциты трех видов.
Базофильные нормоциты обычно имеют размеры 10–18 мкм. Ядро круглое, плотное, не содержит нуклеол. Структура ядра более грубая, чем у пронормоцита, с четким разделением на базихроматин и оксихроматин, в результате чего ядро имеет колесовидную структуру. Цитоплазма базофильная, темноили светло-синяя.
В миелограмме в норме содержится 1,4–4,6 % базофильных нормоцитов.
Полихроматофильные нормоциты по размеру меньше базофильных – 9-12 мкм. Форма круглая или овальная. Ядро плотное. Сохраняется колесовидная структура ядра, но в нем уже отмечаются пикнотические изменения, выраженные в большей или меньшей степени. Цитоплазма клеток, накапливая гемоглобин, воспринимает кислые краски и в зависимости от степени насыщения гемоглобином при окрашивании приобретает цвет от серовато-синего до серовато-розового – полихроматофилия.
В миелограмме здорового человека содержится 8,9-16,9 % полихроматофильных нормоцитов.
Оксифильные нормоциты – самые маленькие из нормоцитов, имеют размеры 7-10 мкм. В зависимости от степени созревания клетки ядерно-цитоплазматическое отношение различно. У более зрелой клетки ядро занимает меньшее пространство вследствие сморщивания или пикноза. Ядро плотное, компактное, грубопикнотическое, расположено эксцентрично. Цитоплазма ортохромная, розовая, хорошо насыщена гемоглобином, иногда содержит вблизи ядра оторвавшиеся частицы – тельца Жолли. На стадии оксифильного нормоцита происходит выталкивание ядра и превращение клетки в безъядерный эритроцит. Параллельно процессу превращения нормоцита в эритроцит идет накопление гемоглобина в цитоплазме.
В миелограмме в норме содержится 0,8–5,6 % оксифильных нормоцитов.
Промежуточной стадией между оксифильным нормоцитом и эритроцитом является ретикулоцит.
Морфология ретикулоцитов и эритроцитов представлена в предыдущих разделах.Морфология клеток гранулоцитарного ростка Миелобласты – это родоначальные клетки гранулоцитарного ряда, чаще круглой, реже полигональной формы, размером 15–16 мкм или 15–20 мкм. Независимо от своих размеров клетки отличаются нежной структурой ядер с равномерным распределением хроматиновых нитей, образующих тонкопетлистую сеть. Ядро содержит 2–5 ядрышек, окрашенных в синий или голубой цвет. Голубая цитоплазма окружает ядро небольшим пояском, содержит умеренное количество не всегда отчетливо видимой неспецифической азурофильной зернистости, имеющей переходные оттенки от красного до фиолетового цвета; встречаются палочки Ауэра, может присутствовать перинуклеарная зона просветления. У всех миелобластов соотношение ядра и цитоплазмы существенно сдвинуто в пользу ядра. В нормальном костном мозге эозинофильные и базофильные миелобласты, как правило, не встречаются. В миелограмме здорового человека содержится 0,2–1,7 % миелобластов.
ПромиелоцитыВ результате митотического деления и дифференцировки миелобласты переходят в следующую стадию развития – промиелоциты. Эти клетки в известной степени еще повторяют морфологические черты миелобластов. Промиелоцит любого ряда является самой крупной клеткой, достигая в диаметре 25 мкм. Промиелоцит имеет наиболее обильную зернистость. Необходимо отметить многообразие в размерах клеток и цитоплазмы, в структуре и форме ядра, не всегда отчетливо видимых ядрышек или их остатков, в степени насыщения цитоплазмы полиморфной зернистостью. Ядра промиелоцитов могут быть округлыми, овальными, бобовидными, часто расположены эксцентрично. Структура хроматиновых нитей более грубая, чем у миелобластов. Порой ядра приобретают структуру, переходную в сторону следующей стадии дифференцировки – миелоцитов: появляется утолщение хроматиновых нитей, ядро теряет нежное равномерное строение, сетчатость. Цитоплазма различной ширины, голубого цвета, иногда синяя у более молодых клеток, розовато-голубая – у более зрелых, может быть дымчатой, с резко выраженной азурофильной зернистостью (клетка как бы посыпана перцем), которая располагается на ядре и в цитоплазме. В миелограмме здорового человека содержится 1,0–4,1 % нейтрофильных промиелоцитов.
МиелоцитыМиелоциты достигают размера 13–15 мкм и более, ядра могут быть округлыми, овальными, с неправильными очертаниями, расположенными то центрально, то эксцентрично. Структура ядра характеризуется чередованием темных (базихроматин) и светлых (оксихроматин) участков, что отличает миелоцит от промиелоцита и миелобласта. Материнские миелоциты имеют более нежную структуру ядра. В единичных клетках содержатся одиночные ядрышки. Ядерно-цитоплазматическое соотношение сдвинуто в пользу ядра. Цитоплазма у зрелых нейтрофильных миелоцитов розовато-фиолетового цвета, у базофильных и эозинофильных – голубого. В некоторых клетках цитоплазма имеет базофильные участки по периферии, чередующиеся с обычными нейтрофильными участками. Зернистость может быть нейтрофильной, эозинофильной и базофильной. Нейтрофильная зернистость разнообразна по размерам. Эозинофильная зернистость заполняет цитоплазму клетки, имеет гранулы одинакового размера, желтовато-розового или золотисто-желтого цвета. Базофильные миелоциты содержат крупную базофильную зернистость разного калибра, не очень густо заполняющую цитоплазму. В миелограмме здорового человека содержится 7,0-12,2 % нейтрофильных миелоцитов, 0,6–1,0 % – эозинофильных, 0–0,2 % – базофильных.