На этом рисунке выделены две звезды. Одна обведена красным (та же звезда, что и на рис. 8.3). Другая находится внутри желтого ромбика. Можно видеть по два изображения каждой звезды: одно — снаружи фиолетовой окружности, другое — внутри ее. Эта фиолетовая окружность называется кольцом Эйнштейна.
По мере того как камера движется направо, изображения звезд движутся вдоль желтой и красной линий.
Те изображения звезд, что находятся за переделами кольца Эйнштейна (назовем их первичными), двигаются ожидаемым образом: постепенно слева направо, однако, приближаясь к черной дыре, они отклоняются от нее. (Можете ответить, почему они отклоняются от дыры, а не к ней?)
Изображения же из второй пары, лежащие внутри кольца Эйнштейна, движутся весьма странным образом: они будто выходят из-за правого края тени, движутся наружу, но, не выходя за кольцо Эйнштейна, плавно поворачиваются к левой стороне тени и приходят к левому ее краю.
Понять, что здесь происходит, можно, обратившись к схеме на рис. 8.3. Правый луч проходит вблизи черной дыры, и правое изображение звезды оказывается рядом с тенью. Раньше, когда камера находилась левее, правый луч проходил еще ближе к дыре (чтобы сильнее изогнуться и достичь камеры), поэтому тогда правое изображение было еще ближе к тени. Левый же луч, напротив, раньше проходил довольно далеко от тени, оставаясь почти прямым, и формировал изображение звезды на отдалении от дыры.
А теперь, если вам все понятно, подумайте, как изображения, показанные на рис. 8.4, станут перемещаться далее.
Линзирование быстровращающейся черной дыры — Гаргантюа
Пространственный вихрь, образующийся из-за огромной скорости вращения Гаргантюа, влияет на гравитационное линзирование. Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше.
Для Гаргантюа (рис. 8.5) при движении камеры проявляются два кольца Эйнштейна, обозначенных на рисунке фиолетовыми замкнутыми кривыми. Снаружи внешнего кольца звёзды «движутся» вправо (в частности, вдоль двух пар красных кривых), так же как и для невращающейся черной дыры на рис. 8.4. Однако у заднего края тени пространственный вихрь сжимает поток движения в узкие полосы, которые довольно резко изгибаются у экватора, и ускоряет его. Также вихрь образует в потоке «водовороты» (замкнутые красные кривые).
Рис. 8.6. Лучи света, формирующие изображения звезд, на которые указывают синие стрелки (Модель Double Negative, та же, что на рис. 8.1 и 8.5.)
Последовательно изучая эти рисунки, можно многое понять о гравитационном линзировании. Имейте в виду: действительное направление к звезде — вверх и вправо (внешние концы красных лучей). Стрелка, идущая от значка камеры, указывает на изображение звезды. Десятеричное изображение находится очень близко к левому краю тени, а правое вторичное изображение — рядом с правым краем; сравнивая направления камеры для этих изображений, можно увидеть, что тень покрывает примерно 150 градусов направления вверх, несмотря на то что действительное направление от камеры к центру Гаргантюа — влево и вверх. Эффект гравитационного линзирования сдвинул тень относительно действительного направления к Гаргантюа.
Визуальные эффекты: черная дыра и червоточина
Крис хотел, чтобы Гаргантюа выглядела так же, как выглядит вблизи настоящая черная дыра, поэтому он попросил Пола проконсультироваться со мной. Пол свел меня с командой по созданию визуальных эффектов из студии Double Negative (Лондон).
Я стал тесно сотрудничать с Оливером Джеймсом, главным программистом. Мы с Оливером общались по телефону и по «Скайпу», обменивались электронными письмами и файлами, а также встречались лично в Лос-Анджелесе и его лондонском офисе. У Оливера высшее образование в области оптики, ядерной физики и теории относительности, так что мы с ним общались на одном языке.
Некоторые из моих коллег-физиков уже делали компьютерные модели, показывающие, что будет видно при полете вокруг черной дыры и даже при падении в нее. Мастерами в этом слывут Ален Риасуэло из Парижского астрофизического института и Эндрю Гамильтон из Колорадского университета в Боулдере. Эндрю — автор фильмов о черных дырах, которые показывают в планетариях по всему миру, а Ален занимался моделированием черных дыр, которые вращаются очень-очень быстро, как Гаргантюа.
Сначала я планировал вывести Оливера на Алена и Эндрю, чтобы они помогли ему с нужными данными. Несколько дней я мучился сомнениями и в конце концов передумал.
В течение полувековой карьеры в физике я вложил много усилий в собственные исследования, а также в исследования студентов, которых я курировал. Почему бы мне для разнообразия не сделать что-то просто ради интереса, хоть другие и делали это до меня? Вот я и занялся моделированием сам, о чем ничуть не пожалел. Заодно, к моему удивлению, это привело к новым (пусть и не самым значительным) открытиям.
С помощью эйнштейновской теории относительности, а также опираясь на работы других ученых (в особенности Брендона Картера из Лаборатории Вселенной и теорий о ней (Парижская обсерватория) и Жанны Левин из Колумбийского университета), я вывел необходимые Оливеру уравнения. Эти уравнения описывали траектории лучей света, исходящих из некоего источника, например далекой звезды, проникающих через искривленные время и пространство Гаргантюа и достигающих камеры. Затем на основе этих траекторий мои уравнения рассчитывали изображение для камеры, учитывая не только источники света и искривленные пространство и время Гаргантюа, но также и движение камеры вокруг черной дыры.
Сформулировав уравнения, я закодировал их с помощью удобной компьютерной системы Mathematica. Я сравнил изображения, созданные моим программным кодом, с изображениями Алена Риасуэло и с радостью убедился, что в целом они совпадают. Затем я отослал плоды моих трудов Оливеру в Лондон.
Мой код был очень медленным и производил расчеты с низкой точностью. В задачу Оливера входило создать на основе моих уравнений программу, которая генерировала бы IMAX-изображения сверхвысокого качества, подходящие для фильма.
Мы с Оливером занимались этим поэтапно. Начали с невращающейся черной дыры и неподвижной камеры. Затем добавили вращение дыры. Затем — движение камеры: сначала по круговой орбите, потом с падением в черную дыру. И наконец мы занялись камерой вблизи червоточины.