Важную роль было суждено сыграть ниобию в сварочном деле. До тех пор, пока сварке подвергали лишь обычные стали, никаких трудностей этот процесс не представлял. Но когда сварщикам пришлось иметь дело со специальными легированными сталями сложного химического состава, например, с нержавеющей, оказалось, что сварной шов теряет многие ценные свойства, которыми обладает свариваемый металл. Как улучшить качество шва? Пробовали изменить конструкцию сварочного аппарата - не помогло. Меняли состав электродов - безуспешно. Пытались вести сварку в атмосфере инертных газов - никакого эффекта. Вот тут-то на помощь пришел ниобий. Сталь, в которую был введен этот элемент, можно было сваривать, не беспокоясь о качестве шва: он ни в чем не уступал соседним слоям металла, не подвергавшимся сварке.
До последнего времени большие трудности возникали при необходимости получить прочное соединение тугоплавких металлов, например, ниобия с молибденом. Выручила... пустота. Оказалось, что в вакууме температура плавления многих веществ значительно ниже, чем в обычных условиях. Ученые не замедлили воспользоваться этим обстоятельством, чтобы преодолеть «барьер несовместимости»: сварка тугоплавких металлов в вакууме дала отличные результаты.
Как легирующий элемент ниобий широко известен в цветной металлургии. Так, алюминий, легко растворяющийся в щелочах, не реагирует с ними, если в него ввести всего 0,05% ниобия. Медь и ее сплавы при добавке этого элемента приобретают твердость, титан, молибден и цирконий становится более прочным и жаростойким. При низких температурах многие сплавы и стали хрупки, как стекло. Оказалось, что ниобий в состоянии избавить их от этого недостатка. Добавка всего 0,7% ниобия позволяет металлу сохранять свою прочность даже при восьмидесятиградусных морозах. Это качество особенно важно для деталей реактивных самолетов, летающих на больших высотах.
Сам ниобий «охотно» вступает в союз с другими элементами. Когда американская фирма «Вестингхауз» выпустила партию якобы сверхчистого ниобия, заказчики были весьма удивлены, что он не плавится при температурах выше 2500°С, хотя температура плавления чистого ниобия 2468°С. Лабораторный анализ помог установить, что в этом «сверхчистом» ниобии содержались небольшие количества циркония. Так был открыт сверхжаростойкий ниобиевоциркониевый сплав.
Ряд ценных качеств придают ниобию и добавки других металлов. Вольфрам и молибден повышают теплостойкость металлического ниобия, алюминий делает его прочнее, медь значительно улучшает его электропроводность. Чистый ниобий проводит электрический ток в восемь, раз хуже, чем медь. Сплав же ниобия с 20% меди обладает высокой электропроводностью и при этом он вдвое прочнее и тверже чистой меди. В союзе с танталом ниобий способен противостоять серной и соляной кислотам даже при 100°С.
Ниобий - незаменимая составная часть сплавов для рабочих лопаток турбин реактивных двигателей, где металл должен сохранять свою прочность при высоких температурах. Из ниобийсодержащих сплавов и чистого ниобия изготовлены некоторые детали сверхзвуковых самолетов, космических ракет, искусственных спутников Земли.
Еще каких-нибудь несколько лет назад явлением сверхпроводимости интересовались только физики. Сейчас сверхпроводимость уже перешагнула границы лабораторий и начинает вторгаться в технику, где для ее практического применения открываются широкие перспективы. В чем же сущность этого явления?
Более полувека назад было обнаружено, что при очень низких температурах в некоторых металлах, сплавах и химических соединениях ток начинает протекать без всяких потерь - сопротивление исчезает. Но для этого металл нужно охладить почти до абсолютного нуля, т. е. - 273°С. Из всех известных науке материалов наиболее высокой (если только здесь уместен этот термин), а значит, и наиболее легко достижимой температурой перехода в сверхпроводящее состояние (18°К, или - 255°С) характеризуется станнид ниобия - соединение ниобия с оловом. Сверхпроводящие магнитные катушки, изготовленные из сплавов этих элементов, создают колоссальные магнитные поля. Магнит диаметром 16 сантиметров и высотой 11 сантиметров, в котором обмоткой служит лента из такого сплава, способен создать поле напряженностью в 100 тысяч эрстед (для сравнения укажем, что напряженность магнитного поля Земли составляет всего несколько эрстед).
Ниобий широко используют в технике и в чистом виде. Исключительно высокая коррозионная стойкость этого металла обусловила его применение в химическом машиностроении. Интересно, что при изготовлении аппаратуры и трубопроводов солянокислотного производства ниобий не только служит конструкционным материалом, но и играет при этом роль катализатора, давая возможность получить более концентрированную кислоту. Каталитические способности ниобия используют и в других процессах, например, при синтезе спирта из бутадиена.
Весьма почетна и служба ниобия в атомных реакторах, где он трудится бок о бок с цирконием, порой вполне успешно конкурируя с ним. Подобно цирконию, ниобий обладает нейтронной прозрачностью (т. е. способностью пропускать нейтроны) и наряду с этим очень высокой температурой плавления, значительной жаростойкостью, колоссальным сопротивлением химическим воздействиям, отличными механическими свойствами. Кроме того, ниобий почти не взаимодействует с расплавленными щелочными металлами. Жидкие натрий и калий, применяемые в качестве теплоносителей в ядерных реакторах некоторых типов, могут свободно циркулировать по ниобиевым трубам, не причиняя им никакого вреда. Для ниобия характерна невысокая искусственная (наведенная) радиоактивность, поэтому из него можно делать контейнеры для хранения радиоактивных отходов или установки по их использованию.
Следует упомянуть еще об одном интересном свойстве этого металла: он отличный газопоглотитель. Так, при обычной температуре в 1 грамме ниобия может быть растворено более 100 кубических сантиметров водорода; даже при 500°С растворимость водорода в ниобии составляет около 75 кубических сантиметров на грамм. Это свойство металла используют в производстве высоковакуумных электронных ламп. При откачивании ламп в них все же остается некоторое количество газов, мешающих работе. Ниобий, нанесенный на детали ламп, как губка, поглощает эти газы, обеспечивая тем самым весьма высокий вакуум. Детали электронных ламп, изготовленные из ниобия, более экономичны, чем танталовые или вольфрамовые, и служат гораздо дольше. Так, срок службы мощных генераторных ламп с ниобиевым катодом достигает 10 ООО часов.
Как и тантал, ниобий совершенно не вызывает раздражения тканей человеческого тела, срастается с ними и остается инертным даже после длительного воздействия жидкой среды организма. Благодаря этим свойствам ниобий обратил на себя внимание хирургов и теперь с полным правом может считать себя «ответственным медицинским работником».
В последнее время поговаривают, что ниобий решил всерьез заняться «валютными операциями». Дело в том, что в связи с нехваткой серебра американские финансисты предполагают для изготовления металлических денег использовать вместо него ниобий, поскольку стоимость ниобия примерно соответствует стоимости серебра.
Если проследить по различным литературным источникам за данными о содержании ниобия в земной коре, то окажется, что на протяжении последних нескольких десятков лет оно постоянно... возрастает. Разумеется, фактические запасы этого металла на нашей планете остаются практически постоянными, а вот число разведанных месторождений его все время увеличивается. В последние годы новые значительные залежи ниобиевых руд обнаружены в Африке. Самый крупный поставщик концентратов ниобия на мировой рынок - Нигерия, где расположены громадные скопления колумбита.
В нашей стране подлинной кладовой полезных ископаемых по праву считается Кольский полуостров. Веками земли этого края слыли бесплодными и бесполезными, хотя еще в 1763 году М. В. Ломоносов предсказывал: «По многим доказательствам заключаю, что и в северных земных недрах пространно и богато царствует натура и берега Белого моря должны быть не скудны минералами». За годы Советской власти здесь открыто множество важных месторождений, найдены десятки ценных минералов, в том числе лопарит, содержащий до 8% ниобия. Любопытно, что этот минерал, обнаруженный замечательным исследователем Кольского полуострова А. Е. Ферсманом в Хибинских массивах, ни в каких других местах Земли не встречается.
...Вот вы и познакомились с жильцом квартиры № 41, на дверях которой висит табличка с надписью «Ниобий».
Ti
V
Cr
Mn
Ge
As
Se
Br
Zr
Nb
Mo
Tc
СОЮЗНИК ЖЕЛЕЗА
Без приправ не обойтись! - Под чужим именем. - Ошибка древних греков. - В знак протеста. - «Небоскреб» в 1600 этажей. - Авария на ровном месте. - Мечта парикмахеров. - Опора для вольфрамовой нити. - «Принимаю нагрузку на себя...». - Стекло меняет свой цвет. - Верные друзья. - Тайна самурайских мечей. - Танк становится неуязвимым. - Лезвие бритвы. - «Родственные души». - Мороз не страшен. - «Запчасти» человека. - Любимец бобов. - На чем основан «Союз рыжих»? - Непрошенные гости. - Скромное место. - «Военный» металл. - Высоко в горах. - Миллионы метров. - Где ключи от «сундуков»?
Чтобы приготовить вкусное блюдо, кулинар добавляет к нему различные специи. Чтобы выплавить сталь с ценными свойствами, сталевар вводит в нее различные легирующие элементы..
У каждой приправы своя цель. Одни улучшают вкусовые качества кушанья, другие делают его ароматным и аппетитным, третьи придают ему остроту, четвертые... Трудно сосчитать все назначения специй. Но еще труднее перечислить все те замечательные свойства, которые приобретает сталь при добавке хрома, титана, никеля, вольфрама, молибдена, ванадия, циркония и других элементов.
Одному из верных союзников железа - молибдену - и посвящен этот рассказ.
...Молибден был открыт в 1778 году шведским химиком Карлом Вильгельмом Шееле. Название элемента происходит от греческого слова «молибдос». В том, что новорожденный был окрещен греческим именем, нет ничего удивительного - многие химики, перед тем как наречь открытые ими элементы, заглядывали в греческие «святцы». Удивительно другое: в переводе на русский язык «молибдос» означает... «свинец». Что же заставило этот элемент «скрываться» под чужим именем? Почему именно свинцу молибден обязан своим названием?
Ларчик открывается просто. Дело в том, что еще древним грекам был известен минерал свинца галенит, который они называли «молибдена». В природе существует другой минерал - молибденит, как две капли воды похожий на галенит. Это сходство и ввело греков в заблуждение: они считали, что имеют дело с одним и тем же минералом - молибденой. Такого же мнения придерживались химики других стран. И потому, когда Шееле обнаружил в этом минерале не известный ранее элемент, ученый без долгих размышлений и колебаний назвал новичка молибденом.
В 1783 году шведскому химику Гьельму удалось выделить элемент в виде металлического порошка, который, однако, был загрязнен карбидами. Чтобы получить чистый молибден, понадобилось еще целое столетие.
Подобно многим своим «собратьям» по Периодической системе, молибден совершенно нетерпимо относится к посторонним примесям и, словно в знак протеста, в корне меняет свойства. Тысячные и даже десятитысячные доли процента кислорода или азота придают молибдену большую хрупкость. Вот почему во многих руководствах по химии, изданных в начале XX века, утверждалось, что молибден почти не поддается механической обработке.
На самом же деле, чистый молибден, несмотря на высокую твердость, - достаточно пластичный материал, который сравнительно легко прокатывается и куется.
Первая запись в «трудовой книжке» молибдена появилась несколько столетий назад, когда минералмолибденит начали использовать в качестве грифелей. (Любопытно, что по-гречески карандаш и сейчас называется «молибдос».) Как и графит, молибденит состоит из множества чешуек, размеры которых настолько малы, что если уложить их одна на другую, то высота «небоскреба» из 1600 этажей-чешуек окажется равной... 1 микрону. Именно благодаря этим чешуйкам молибденит «умеет» писать и рисовать: на бумаге он оставляет зеленовато-серый след.
В наши дни уже не встретишь молибденитовых грифелей: карандашной промышленностью монопольно завладел графит. Но дисульфид молибдена (химическое название молибденита) нашел себе другое применение. Впрочем, прежде чем рассказать об этом, поведаем вам небольшую историю.
Случилось это несколько лет назад. На Симферопольском шоссе проходили испытания опытной партии автомобилей «Запорожец». Все шло благополучно, но вдруг на полном ходу одна из машин перевернулась на совершенно ровном месте. К счастью, сидевшие в машине люди отделались, как говорится, легким испугом. Причина аварии была загадкой до тех пор, пока машину не разобрали «по косточкам». Выяснилось, что одна из шестерен коробки передач, которая должна была свободно вращаться на стальной втулке, намертво приварилась к ней. Разумеется, такой «тормоз» сработал мгновенно.
Чтобы подобные аварии не повторялись в дальнейшем, нужно было подобрать подходящую смазку. Вот тут и вспомнили о молибдените, вернее, о его способности расслаиваться на отдельные микроскопические чешуйки. Они-то и должны были послужить надежной смазкой для трущихся деталей коробки передач.
Стоит на мгновенье опустить стальную деталь в жидкость, содержащую лишь 2% дисульфида молибдена, и поверхность детали покрывается тонким слоем отличной твердой смазки. Однако у такой смазки есть коварный враг - высокая температура. При нагреве дисульфид молибдена начинает превращаться в молибденовый ангидрид, который, хоть и не причиняет вреда поверхностям деталей, но и не обладает, к сожалению, смазочными свойствами. Как же избежать этого?
Оказалось, что перед нанесением дисульфидного слоя деталь необходимо обработать в горячей фосфатной ванне. В этом случае частицы дисульфида проникают в мельчайшие поры фосфатного покрытия и на поверхности детали образуется тончайшая смазочная пленка, которая способна выдерживать колоссальные нагрузки - несколько тонн на квадратный сантиметр. Втулки, покрытые этой пленкой, испытывали при тяжелейших режимах работы - и ни одного случая сварки. С тех пор «Запорожцы» исколесили нашу страну вдоль и поперек, но злополучный узел передач не подводил больше ни разу.
Созданием смазочной пленки не исчерпывается благотворное влияние дисульфида молибдена на стальную поверхность: если обработать молибденитом режущий инструмент, то он станет более стойким, более долговечным. Когда об этом чудесном свойстве молибденита узнали парикмахеры, они с завидной оперативностью поспешили внедрить его в практику.
Но вернемся к молибдену. Благодаря тугоплавкости и низкому коэффициенту теплового расширения этот металл широко применяют в электротехнике, радиоэлектронике, технике высоких температур. Крючки, на которых подвешена вольфрамовая нить в обыкновенной электрической лампочке, сделаны из молибдена. Из него же изготовляют многие детали радиоламп, рентгеновских трубок. Молибденовые спирали служат нагревателями в мощных вакуумных электропечах сопротивления, где развиваются весьма высокие температуры.
Очень ценные материалы получены в Институте проблем материаловедения АН УССР. Основой их служат пластичные металлы (алюминий, медь, никель, кобальт, титан и др.), а высокопрочные металлы, такие как вольфрам или молибден, используемые в виде нитей, играют роль арматуры, принимая на себя главную растягивающую нагрузку. Прочность, например, никеля и кобальта, армированных вольфрамовой и молибденовой проволокой, повышается почти в три раза. Титан, армированный молибденом, имеет прочность, вдвое большую, чем тот же металл в обычном состоянии.
Несколько лет назад в США было создано оригинальное стекло, изменяющее свой цвет в зависимости от... времени дня. Под действием солнечного света стекло становится синим, а с наступлением темноты - вновь прозрачным. Этот эффект обусловлен добавками молибдена, который либо вводят в расплавленное стекло, либо в виде тонкой прозрачной пленки вклеивают между двумя слоями стекла.
Разнообразное применение нашли соединения молибдена. Благодаря ему эмали приобретают высокую кроющую способность. Молибденовые красители используют в производстве керамики и пластических масс, в кожевенной, меховой и текстильной промышленности. Трехокись молибдена служит катализатором при крекинге нефти и других химических процессах.