2) семантический подход, основанный на измерении смыслового содержания информации. В рамках этого подхода существует несколько направлений. Например, О. Х. Шнейдер определял количество информации с помощью тезаурусной меры. Для того чтобы понять и использовать полученную информацию, человек должен обладать определенным запасом знаний, т.е. иметь определенный тезаурус. Поэтому одинаковое содержание информации для различных пользователей будет представлять разную ценность;
3) прагматический подход, определяющий количество информации как меру полезности информации для достижения пользователем поставленной цели;
4) структурный подход, связанный с задачами реорганизации, хранения и извлечения информации. При этом подходе учитываются только физическая и логическая структуры информации.
27 СИСТЕМА КОДИРОВАНИЯ ИНФОРМАЦИИ
Кодирование предназначено для унификации формы представления данных, относящихся к различным типам, с целью автоматизации работы с информацией.
Кодированием называется выражение данных одного типа через данные другого типа. Например, естественные человеческие языки можно рассматривать как системы кодирования понятий для выражения мыслей посредством речи. Также и азбуки являются системами кодирования компонентов языка с помощью графических символов.
Система кодирования информации, применяемая в вычислительной технике, называется двоичным кодированием. В ее основе лежит представление данных через последовательность двух знаков: 0 и 1. Эти знаки называют двоичными цифрами (binary digit), или сокращенно bit ( бит). С помощью одного бита могут быть закодированы два понятия: 0 или 1 (да или нет, истина или ложь и т.п.). С помощью двух бит можно выразить четыре различных понятия. Тремя битами можно закодировать восемь различных значений.
Наименьшей единицей кодирования информации в вычислительной технике после бита является байт. Он связан с битом следующим соотношением: 1 байт = 8 бит = 1 символ.
Как правило, одним байтом кодируется один символ текстовой информации. Поэтому для текстовых документов размер в байтах соответствует лексическому объему в символах.
Более крупной единицей кодирования информации является килобайт, который связан с байтом следующим соотношением: 1 Кб = 1024 байт.
Другие, более крупные, единицы кодирования информации образуются с помощью добавления префиксов мега – (Мб), гига – (Гб), тера – (Тб).
1 Мб = 1048580 байт.
1 Гб = 10737740000 байт.
1 Тб = 1024 Гб.
Для того чтобы закодировать двоичным кодом целое число, необходимо взять целое число и делить его пополам до тех пор, пока частное не будет равно единице. Совокупность остатков от каждого деления, записанная справа налево вместе с последним частным, и будет являться двоичным аналогом десятичного числа.
Для кодирования целых чисел от 0 до 255 достаточно иметь 8 разрядов двоичного кода (8 бит). С помощью 16 бит можно закодировать целые числа от 0 до 65535, а с помощью 24 бит – более 16,5 млн различных значений.
Для кодирования действительных чисел применяется 80–разрядное кодирование. При этом число предварительно преобразовывают в нормализованную форму, например:
2,1427926 = 0,21427926 χ 101 ;
500 000 = 0,5 χ 106 .
Первая часть закодированного числа называется мантиссой, а вторая часть – характеристикой. Большая часть из 80 бит отводится для хранения мантиссы, и некоторое фиксированное количество разрядов отводится для хранения характеристики.
28 КОДИРОВАНИЕ ТЕКСТОВОЙ ИНФОРМАЦИИ
Кодирование текстовой информации двоичным кодом осуществляется посредством обозначения каждого символа алфавита определенным целым числом. Тогда с помощью восьми двоичных разрядов можно закодировать 256 различных символов. Этого количества символов достаточно, чтобы выразить все символы английского и русского алфавитов.
В первые годы развития ЭВМ трудности кодирования текстовой информации были связаны с отсутствием необходимых стандартов кодирования. В настоящее время, напротив, эти трудности вызваны большим количеством одновременно действующих и зачастую противоречивых стандартов.
Для английского языка как для неофициального международного средства общения эти трудности были решены. Институт стандартизации США разработал и ввел в действие систему кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США).
Были разработаны несколько кодировок русского алфавита:
1) кодировка Windows–1251 была введена компанией "Microsof"t, и с учетом широкого распространения ОС и других программных продуктов этой компании в РФ она нашла широкое распространение;
2) кодировка КОИ–8 (Код Обмена Информацией, восьмизначный) является другой популярной кодировкой российского алфавита, распространенной в компьютерных сетях на территории РФ и в российском секторе Интернета;
3) кодировка ISO (International Standard Organization – Международный институт стандартизации) является международным стандартом кодирования символов русского языка. На практике данная кодировка используется редко.
Ограниченный набор кодов (256) создает достаточное количество трудностей для разработчиков единой системы кодирования текстовой информации. Поэтому было предложено кодировать символы не восьмиразрядными двоичными числами, а числами с большим разрядом, что привело к расширению диапазона возможных значений кодов. Система 16–разрядного кодирования символов получила название универсальной – UNICODE. Шестнадцать разрядов обеспечивают уникальные коды для 65 536 символов, что вполне достаточно для размещения в одной таблице символов большинства языков планеты.
Несмотря на простоту предложенного подхода, практический переход на данную систему кодировки долгое время не мог осуществиться из–за недостатков ресурсов средств вычислительной техники, потому что в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое больше.
В конце 1990–х гг. технические средства достигли необходимого уровня, и стал происходить постепенный перевод документов и программных средств на систему кодирования UNICODE.
29 КОДИРОВАНИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ
Существует несколько методов кодирования графической информации.
Если черно–белое графическое изображение рассматривать с помощью увеличительного стекла, то можно заметить, что оно состоит из мельчайших точек, образующих характерный узор (или растр). Линейные координаты и индивидуальные свойства каждой точки изображения можно выразить с помощью целых чисел. Поэтому в основе растрового кодирования лежит двоичный код представления графических данных. Общепринятым стандартом считается представление черно–белых иллюстраций в виде комбинации точек с 256 градациями серого цвета. Таким образом, для кодирования яркости любой точки достаточно восьмиразрядного двоичного числа.
В основе кодирования цветных графических изображений лежит принцип декомпозиции произвольного цвета на основные составляющие, в качестве которых определены три основных цвета: красный (Red), зеленый (Green) и синий (Blue). На практике считается, что любой цвет, видимый человеческим глазом, можно получить с помощью механической комбинации этих трех цветов. Такая система кодирования называется RGB ( по первым буквам основных цветов). При использовании 24 двоичных разрядов для кодирования цветной графики такой режим называется полноцветным (True Color).
Каждому из основных цветов можно поставить в соответствие цвет, дополняющий основной цвет до белого. Для любого из основных цветов дополнительным будет цвет, образованный суммой пары остальных основных цветов. Соответственно дополнительными цветами являются голубой (Cyan), пурпурный (Magenta) и желтый (Yellow).
Следовательно, принцип декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, т.е. любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей. Данный метод кодирования цвета используется в полиграфии, но в полиграфии употребляется еще и четвертая краска – черная (Black).
Поэтому данная система кодирования обозначается четырьмя буквами CMYK. Для представления цветной графики в этой системе используются 32 двоичных разряда. Такой режим также называется полноцветным.
С уменьшением количества двоичных разрядов, используемых для кодирования цвета каждой точки, сокращается объем данных, но при этом и диапазон кодируемых цветов заметно уменьшается.
Кодирование цветной графики 16–разрядными двоичными числами называется режимом High Color. При кодировании графической цветной информации с использованием 8 бит данных можно передать только 256 оттенков. Такой метод кодирования цвета называется индексным.
30 КОДИРОВАНИЕ ЗВУКОВОЙ ИНФОРМАЦИИ
На сегодняшний день не существует единой стандартной системы кодирования звуковой информации, потому что приемы и методы работы со звуковой информацией начали развиваться по сравнению с методами работы с другими видами информации наиболее поздно.
По этой причине множество различных компаний, работающих в области кодирования информации, создали свои собственные корпоративные стандарты для звуковой информации. Однако среди этих корпоративных стандартов можно выделить два основных направления.
В основе метода FM (Frequency Modulation) лежит утверждение о том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду и, следовательно, может быть описан числовыми параметрами или закодирован. Звуковые сигналы имеют непрерывный спектр, т.е. являются аналоговыми, поэтому их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальный устройства – аналогово–цифровые преобразователи (АЦП).
Обратное преобразование для воспроизведения звука, закодированного числовым кодом, осуществляется посредством цифро–аналоговых преобразователей (ЦАП).
Вследствие таких преобразований звуковых сигналов неизбежны потери информации, связанные сметодом кодирования. Поэтому качество звукозаписи с помощью метода FM обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окраской, характерной для электронной музыки.
В то же время данный метод обеспечивает весьма компактный код, поэтому он широко применялся в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
Основная идея метода таблично–волнового (Wave–Table) синтеза заключается в том, что в заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментов.
Такие звуковые образцы называются сэмплами. Числовые коды, заложенные в сэмпле, выражают такие его характеристики, как тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые компоненты среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звучания.
Поскольку в качестве образцов используются реальные звуки, то качество закодированной звуковой информации получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов, что в большей степени соответствует современному уровню развития вычислительной техники.
31 РЕЖИМЫ И МЕТОДЫ ПЕРЕДАЧИ ИНФОРМАЦИИ
Для корректного обмена данными между узлами локальной вычислительной сети применяются определенные режимы передачи информации:
1) симплексная (однонаправленная) передача;
2) полудуплексная передача (прием и передача информации источником и приемником осуществляются поочередно);
3) дуплексная передача (параллельная одновременная передача, т.е. каждая станция одновременно передает и принимает данные).
В информационных системах чаще всего используется дуплексная или последовательная передача данных.
Существуют синхронный и асинхронный методы последовательной передачи данных.
Синхронный метод характеризуется тем, что данные передаются блоками. С целью синхронизации работы приемника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи.
Эта последовательность составляет стандартную схему передачи данных при синхронном методе. При синхронной передаче данные передаются и в виде символов, и как поток битов.
Кодом обнаружения ошибки обычно является циклический избыточный код обнаружения ошибок (CRC), определяемый по содержимому поля данных.
Он позволяет однозначно определить достоверность принятой информации.
Преимущества метода синхронной передачи:
1) высокая эффективность;
2) высокая скорость передачи данных;
3) надежный встроенный механизм обнаружения ошибок.
Основной недостаток синхронного метода передачи данных – дорогое интерфейсное оборудование.
Асинхронный метод характеризуется тем, что каждый символ передается отдельной посылкой. Стартовые биты предупреждают приемник о начале передачи, а уже затем передается сам символ. Для определения достоверности передачи используется бит четности. Бит четности равен единице, если количество единиц в символе нечетно, и нулю – в противном случае. Последний бит, называемый "стоп–бит", сигнализирует об окончании передачи. Эта последовательность составляет стандартную схему передачи данных при асинхронном методе.
Преимущества метода асинхронной передачи:
1) несложная отработанная система передачи;
2) недорогое (по сравнению с синхронным) интерфейсное оборудование.
Недостатки метода асинхронной передачи:
1) третья часть пропускной способности теряется на передачу служебных битов;
2) невысокая скорость передачи по сравнению с синхронным методом;
3) невозможность определить достоверность полученной информации с помощью бита четности при множественной ошибке. Метод асинхронной передачи применяется
в системах, где обмен данными происходит время от времени и не требуется высокая скорость передачи данных.
32 ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ
Информация является одним из ценнейших ресурсов общества наряду с такими традиционными материальными видами ресурсов, как нефть, газ, полезные ископаемые и др. Следовательно, процесс переработки информации по аналогии с процессами переработки материальных ресурсов можно воспринимать как своего рода технологию.
В этом случае будут справедливы следующие определения.
Информационными ресурсами называется совокупность данных, которые представляют ценность для предприятия (организации) и выступают в качестве материальных ресурсов. К информационным ресурсам относятся тексты, знания, файлы с данными и т.д.
Информационной технологией называется совокупность методов, производственных процессов и программно–технических средств, объединенных в технологическую цепочку, которые обеспечивают сбор, хранение, обработку, вывод и распространение информации для снижения трудоемкости процессов использования информационных ресурсов, повышения их надежности и оперативности.
В соответствии с определением, принятым ЮНЕСКО, информационной технологией называется совокупность взаимосвязанных, научных, технологических и инженерных дисциплин, которые изучают методы эффективной организации труда людей, занятых обработкой и хранением информации, а также вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием.
Совокупность методов и производственных процессов определяют методы, приемы, принципы и мероприятия, которые регламентируют проектирование и использование программно–технических средств для обработки данных. В зависимости от конкретных прикладных задач, которые требуется решить, можно применять различные методы обработки данных, различные технические средства.
По этой причине выделяют три класса информационных технологий, которые позволяют работать с различного рода предметными областями:
1) глобальные информационные технологии, которые включают модели, методы и средства, формализующие и позволяющие использовать информационные ресурсы общества в целом;
2) базовые информационные технологии, которые предназначены для определенной области применения;
3) конкретные информационные технологии, которые реализуют обработку конкретных данных при решении конкретных функциональных задач пользователя (например, задач планирования, учета, анализа и т.д.).
Основная цель информационной технологии заключается в производстве и обработке информации для ее последующего анализа человеком и принятия на основе проведенного анализа оптимального решения, касающегося выполнения какого–либо действия.
33 ЭТАПЫ РАЗВИТИЯ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
Существует несколько точек зрения на этапы развития информационных технологий с использованием компьютеров. Этапизация осуществляется на основе различных признаков деления:
1) выделения этапов по проблемам процесса информатизации общества:
а) 1–й этап (до конца 1960–х гг.) – проблема обработки больших объемов информации в условиях ограниченных возможностей аппаратных средств;
б) 2–й этап (до конца 1970–х гг.) – проблема отставания программного обеспечения от уровня развития аппаратных средств;
в) 3–й этап (с начала 1980–х гг.) – проблемы максимального удовлетворения потребностей пользователя и создания соответствующего интерфейса работы в компьютерной среде;
г) 4–й этап (с начала 1990–х гг.) – проблемы выработки соглашений и установления стандартов, протоколов для компьютерной связи, организации доступа к стратегической информации и др.;
2) выделения этапов по преимуществу, приносимому компьютерной технологией: