Развитие орошения, особенно в тропических странах, обычно сопровождается рядом социальных последствий. Одно из наиболее важных – рост болезней, связанных с переносчиками, таких как малярия, шистосоматоз или онкоцеркоз. Другие последствия – это ухудшение качества питьевой воды и заболачивание (подтопление) населенных пунктов вследствие неэффективного управления орошаемыми массивами.
Геоэкологические проблемы орошения указывают на необходимость учета полной стоимости ирригации, которая бы включала не только затраты на строительство и эксплуатацию оросительных систем, но и стоимость ухудшения состояния окружающей среды, затраты на решение экологических вопросов и социально-экономических проблем. Такая полная стоимость, несмотря на очевидные трудности подобных расчетов, помогла бы оценивать действительную эффективность проектов оросительных систем. Таким образом, орошение будет рассматриваться не как привлекательный и недорогой способ увеличения производства продуктов сельского хозяйства (что неверно), а, как и в случае с сельскохозяйственными химикалиями, как обоюдоострый меч, с которым надо обращаться с осторожностью, потому что он может принести как добро, так и зло.
VII.5. Геоэкологическая устойчивость сельского хозяйства
Анализ антропогенных факторов изменения состояния почв и использования земель мира говорит о том, что педосфера как основа живого вещества Земли, как критическое звено в глобальных биогеохимических циклах, как основной источник продовольствия для быстро растущего населения мира находится под угрозой. Деградация педосферы – одна из самых серьезных, долгосрочных геоэкологических проблем мира, потому что нигде более разрушение систем жизнеобеспечения Земли не зашло так далеко. Имеются более видимые и более впечатляющие общемировые проблемы, встречаются очень острые локальные проблемы, и они привлекают внимание. Но деградация педосферы все еще не расценивается так, как она того заслуживает.
Главная область беспокойства – сельское хозяйство, где возможность временно поправить ситуацию посредством внесения удобрений и пестицидов, введение искусственного полива или же использование новых машин могут временно отложить или скрыть наступающий кризис. С одной стороны, технологические вложения, лишь временно замещающие естественные факторы плодородия почв, приносят с собой ряд геоэкологических проблем, обсуждавшихся выше. С другой стороны, сами эти технологические вложения есть продукт экологически неблагополучной промышленности или энергетики. В результате сельское хозяйство, играющее столь большую роль в трансформации экосферы, экологически весьма неустойчиво.
Тревожное состояние ресурсной базы сельского хозяйства можно видеть в большинстве стран мира, от самых богатых и развитых до наиболее обнищавших. Казалось бы, можно полагать, что сельское хозяйство США – это блестящая демонстрация того, что может быть достигнуто при весьма благопрятных природных условиях, умелых, трудолюбивых и предприимчивых фермерах, значительных вложениях со стороны науки и техники в виде постоянно совершенствующихся машин, химикалиев, семян и пр. и благоприятной ситуации на мировом рынке сельскохозяйственных продуктов. И действительно, успехи весьма впечатляющие. Но нужно также помнить, что успехи американского сельского хозяйства идут во многом за счет потерь почвенных ресурсов, то есть вследствие его экологической неустойчивости.
Известно, что половина толщины почвенного слоя штата Айова исчезла за последние 150 лет. Говорят, что один мешок произведенного зерна кукурузы в этом штате уносит вследствие эрозии два мешка почвы. Поэтому достижения в земледелии Айовы все более основываются на технологии и все менее на естественном плодородии почв. Но если столь значительная степень деградации характерна для штата и страны, располагающих высококлассной Службой охраны почв, то что говорить о большинстве стран? Выше приводился пример Индонезии, где весь прирост продукции сельского хозяйства происходит из-за потери плодородия почв, и это не самый худший пример. Об антропогенной деградации почв России и бывшего СССР уже говорилось. Четыре самые крупные сельскохозяйственные страны мира, США, Китай, Индия и бывший СССР, используют несколько меньше половины пахотных земель мира, но потери от эрозии и засоления почв превышают 50 % общемировых потерь.
Геоэкологическая неустойчивость агроэкосистем отмечается на всех иерархических уровнях. Существует очень много примеров деградации почв на уровне поля вследствие эрозии, засоления, загрязнения, уплотнения почв. На уровне водосбора проявляются в основном проблемы химического характера, такие как увеличивающийся транспорт растворенных солей реками или рост концентрации нитратов в источниках водоснабжения. На глобальном уровне нарушения в основном в социально-экономической сфере, но природные процессы также испытывают неблагоприятные воздействия. Например, животноводство Нидерландов в значительной степени зависит от производства корнеплодов (ямса, маниоки и пр.) в странах юго-восточной Азии, таких как Индонезия или Таиланд. В результате усиливается разрушение ресурсной базы в странах – производителях маниоки вследствие, например, эрозии почв и возрастает загрязнение воды и почвы в Нидерландах вследствие избытка навоза, превышающего естественную способность его переработки на голландской территории.
Несмотря на продолжающееся ухудшение ресурсной базы сельского хозяйства, растущее население мира должно быть обеспечено питанием. Необходим переход к экологически устойчивому сельскому хозяйству. Стратегия перехода весьма сложна и требует очень больших усилий даже для ее разработки, не говоря уже о выполнении. В сложной системе, какой является сельское хозяйство, элементы стратегии могут быть весьма далеки от состояния почв, но могут привести к желаемым результатам. К ним относятся эффективное управление численностью населения, оптимизация качества питания взамен максимизации объема производства, устранение или снижение государственных субсидий сельскому хозяйству.
Наряду с социально-экономическими элементами стратегии перехода к экологически устойчивому сельскому хозяйству существуют экологически благоприятные методы ведения хозяйства. Они основаны на минимизации посторонних для природы агротехнических приемов, таких как применение пестицидов или минеральных удобрений. Это так называемое органическое земледелие. Его также называют биологическим, или экологическим (organic, biological, ecological farming). В среднем такой метод ведения хозяйства приносит меньшие урожаи, но их продукты отличаются высокими питательными качествами. Вследствие более высоких цен на такие продукты органическое земледелие может приносить не меньше дохода, чем современное высокотехнологичное сельское хозяйство.
Однако доля площади, обрабатываемой с применением органического земледелия, не превышает нескольких процентов даже в передовых странах, но отмечается определенная, хотя и слабая, тенденция к росту. В качестве переходной, или компромиссной, стратегии можно рассчитывать на снижение количества вносимых химических веществ (удобрений и пестицидов), более эффективное их применения, более эффективное управление оросительными системами, разумное ограничение в строительстве новых оросительных систем, применение менее тяжелых машин на более короткое время и пр.
Мы уже приводили пример Нидерландов, где за 10 лет (1983–1993 гг.) уровень применения минеральных удобрений сократился на 47 %, оставаясь при этом все же очень высоким (560 кг/га). При высоком уровне применения удобрений растения слабо реагируют на сверхвысокие дозы, и потому экономичнее снизить интенсивность применения удобрений, получив в то же время несколько более низкий урожай. Меньшая масса применяемых удобрений приводит также к снижению уровня загрязнения окружающей среды (воды и почвы). От этой стратегии еще очень далеко до органического земледелия, но тенденция эта правильная, и она характерна для большинства развитых стран.
Человечество достигло многого в производстве продуктов питания. Но цена была столь высока, что пришлось занимать ресурсы у внуков. Больше занимать нельзя. Более того, пришло время отдавать, и единственный путь к этому – общемировая трансформация сельского хозяйства в духе концепции устойчивого развития.
VIII. Литосфера. Влияние деятельности человека
VIII.1. Строение Земли и литосферы
Основная по массе, твердая часть планеты Земля состоит из ядра, мантии и земной коры. В свою очередь, ядро разделяется на внутреннее и внешнее. Внутреннее ядро имеет радиус 1250 км, объем около 0,7 % и массу около 1,2 % всей Земли. Предполагается, что оно является твердым телом, близким к состоянию плавления. Внешний слой ядра объемом 15,2 % и массой 29,8 % всей Земли располагается на глубинах 2900–5000 км. Считается, что он находится в расплавленно-жидком состоянии.
Мантия располагается на глубинах менее 2900 км. Она делится на три слоя: нижнюю, среднюю и верхнюю. В верхней мантии, на глубинах порядка 60-250 км, преобладают базальты, находящиеся в состоянии расплава или близком к этому. В этом слое вязкость вещества и его прочность на два-три порядка величины меньше, чем вязкость и прочность вышележащего жесткого слоя. Слой пониженной вязкости называется астеносферой.
Вышележащий жесткий слой, ограничивающий сверху твердую часть Земли, – это земная кора. Средняя плотность вещества коры – 2,8 г/см. Ее масса составляет 0,8 % массы всей Земли. Средняя толщина земной коры около 30 км с колебаниями от 4–6 км под срединными океаническими хребтами и некоторыми абиссальными впадинами до 55–70 км под молодыми складчатыми горами.
В земной коре сверху вниз обособляются три слоя: осадочный, гранитный и базальтовый. В верхнем слое преобладают глины, глинистые сланцы, песчаные, карбонатные и вулканогенные породы. Толщина осадочного слоя изменяется от 20–25 км в глубоких впадинах до практически полного его отсутствия на кристаллических щитах. Средний слой земной коры состоит из пород, близких по своим свойствам к граниту (граниты, гнейсы, гранодиориты, диориты, кристаллические сланцы, амфиболиты). Он отсутствует под океанами, а на континентах его мощность достигает нескольких десятков километров. Базальтовый слой сложен кристаллическими породами основного состава, более плотными по сравнению с гранитным слоем. Под океанами его мощность порядка 2–7 км, а под континентами его толщина в пределах 15–40 км.
Строение земной коры весьма разнообразно, но выделяют два основных типа коры: континентальный и океанический. В типичном разрезе континентальной коры сверху лежат осадочные породы средней мощностью 3 км и плотностью 2,5 г/см. Глубже следует гранитно-метаморфический слой средней мощностью 17 км и плотностью 2,6–2,8 г/см. Под ним располагается базальтовый слой средней мощностью 15 км и плотностью 2,9–3,3 г/см. В типичном разрезе океанической коры средняя мощность рыхлых отложений составляет 0,7 км. Они лежат непосредственно на базальтах.
Земная кора и прилегающая к ней часть верхней мантии образуют литосферу. Непосредственно под литосферой располагается астеносфера. В литосфере находятся очаги большинства землетрясений, причем преимущественно в верхних 30 км.
Самые верхние горизонты литосферы находятся в совместном и взаимосвязанном взаимодействии с другими геосферами. В результате такого взаимодействия образуется кора выветривания – совместный продукт действия воды, воздуха и живых существ. На корах выветривания развиваются почвы. Мощность кор выветривания и их строение в целом подчиняются закону географической зональности. В нивальном и аридном поясах мощность кор выветривания не достигает обычно и 10 м, при относительно простой ее структуре, в то время как в экваториальном поясе коры выветривания весьма сложно построены, история их развития продолжительна, а мощность может превышать 60 м.
Верхние горизонты литосферы обычно не контактируют непосредственно с атмосферой и гидросферой. На суше литосфера покрыта чехлом почв (педосфера), растительности (биосфера) или же, в особенно холодных условиях, – льда и снега (криосфера). Лишь в пустынях литосфера почти непосредственно соприкасается с атмосферой, да и то сквозь кору выветривания. В то же время сквозь почву и кору выветривания происходит активный газообмен между атмосферой и литосферой. В еще большей степени происходит взаимодействие между литосферой и природными водами, таким образом, что подземные воды – это часть как гидросферы, так и литосферы.
Итак, самые верхние горизонты литосферы активно вовлечены во взаимодействие с другими сферами. Это взаимодействие достигает максимума интенсивности у земной поверхности и уменьшается как книзу, так и кверху. Оно еще более усиливается по мере возрастания роли человека.
Нижняя граница экосферы размыта и постепенно с глубиной сходит на нет. Активная деятельность человека (карьеры, шахты, подземные хранилища, объекты гражданского и гидротехнического строительства, свалки и пр.) охватывает в литосфере преимущественно верхние несколько десятков метров, в целом плавно уменьшаясь с глубиной, хотя отдельные особо глубокие карьеры, шахты и скважины выделяются из общей картины.
Один из самых глубоких в мире открытых карьеров – разработки медной руды Бингем Кэньон в штате Юта в США. Глубина карьера – 774 м, площадь – 7,2 км, а объем удаленного из карьера грунта – 3,4 млрд т. В России глубина карьера на Коркинском разрезе на Урале составляет 520 м. Значительны по глубине и площади многие другие карьеры и разрезы как в нашей стране, так и в мире, образующие горно-промышленные территории, такие как Курская магнитная аномалия (КМА), Канско-Ачинский топливно-энергетический комплекс (КАТЭК) и др.
Отдельные шахты проникают до глубины 4 км. Буровые скважины также достигают глубин в несколько тысяч метров, а самая глубокая в мире, на Кольском полуострове, запроектирована на 15 км в глубину и превысила отметку 12 км.
Многочисленные и обширные карьеры, в которых добываются уголь, железная руда, руды других металлов, строительные материалы и другие полезные ископаемые широко распространены на всех обитаемых континентах. Всего в мире за год из поверхностного слоя литосферы извлекается и перерабатывается более 1000 млрд т минерального сырья. Добывается около 400 видов полезных ископаемых, обеспечивающих около 90 % сырья для тяжелой промышленности.
Около 98 % добываемых в литосфере материалов уходит в отвалы и лишь не более 2 % утилизируется человеком, да и то на относительно краткое время пользования данным продуктом. Иными словами, производится колоссальная антропогенная работа по перемещению материала в верхней части литосферы. Это в сильной степени затрагивает как экосферу в целом, так и отдельные ее части.
Вопросы антропогенного преобразования верхних этажей литосферы относятся к категории универсальных. Они встречаются во многих местах Земли и в совокупности представляют собой весьма распространенную проблему экологической геологии.
По всей видимости, самая серьезная глобальная проблема, касающаяся литосферы, – антропогенная интенсификация экзогенной части большого "геологического" цикла, или цикла эрозии-седиментации.
VIII.2. Большой круговорот вещества и роль в нем человека
Взаимодействие литосферы с атмосферой, гидросферой и биосферой происходит в рамках глобального круговорота (цикла) вещества. Продукты коры выветривания, разрушающейся в результате действия комплекса природных факторов, перемещаются под действием силы тяжести, преимущественно при участии воды, а также ветра, ледников и других агентов. На поверхности Земли, в каждой ее точке, взаимодействуют процессы накопления или расходования вещества. Эти процессы называются экзогенными.
С другой стороны, процессы в недрах Земли (эндогенные процессы) приводят, в конечном итоге, к вертикальным и (или) горизонтальным тектоническим движениям и к проявлениям вулканической деятельности, сопровождающейся выносом на дневную поверхность и в верхние горизонты литосферы большого количества твердого материала.
Результирующая в каждой точке, то есть алгебраическая сумма величин опускания или поднятия отметки поверхности Земли, есть следствие взаимодействия экзогенных и эндогенных процессов, формирующих рельеф Земли.
В областях преимущественного накопления твердого материала осадочные и вулканогенные отложения постепенно погружаются. По мере погружения в течение геологически длительного времени они подвергаются воздействию весьма значительного и увеличивающегося с глубиной давления и температуры, а также глубинных растворов и, таким образом, метаморфизуются. Часть магмы, образующейся в результате этих процессов, прорывается ближе к земной поверхности и преобразуется в кристаллические породы. Вулканогенные породы отлагаются в виде глубинных интрузий и лав, излившихся на дневную поверхность. В областях горообразования вертикальные тектонические движения воздымают кристаллические и метаморфизованные породы на большие высоты, тем самым обеспечивая потенциальную возможность их денудации, разрушения и сноса. В самой верхней части земной коры (зоне гипергенеза) кристаллические породы разрушаются, снова формируя коры выветривания и тем самым замыкая цикл. Этот круговорот отличается весьма малыми, "геологическими" скоростями процессов с характерными временами в миллионы и десятки миллионов лет.
Большой цикл вещества (иногда называемый большим геологическим круговоротом) – один из важнейших процессов Земли как системы, вовлекающих в нее глубинные сферы нашей планеты. Однако лишь часть геологического цикла, а именно преимущественно экзогенные процессы, относится к полю интересов геоэкологии. Они развиваются преимущественно у дневной поверхности и ограничены десятками или первыми сотнями метров в глубину, то есть теми слоями, куда достигает деятельность человека и ее последствия.
По-видимому, человек пока в малой степени влияет на эндогенные процессы, хотя и имеются отдельные признаки или предположения о таком влиянии. Наиболее известны факты усиления сейсмической активности после строительства крупных водохранилищ. В то же время многие экзогенные процессы, преимущественно процессы денудации и сноса, находятся под сильным влиянием деятельности человека.
Рассмотрим важнейшую, с точки зрения геоэкологии, часть большого цикла вещества, относящуюся к литосфере в пределах суши. Если учитывать основные компоненты уравнения баланса массы всего объема суши, находящейся выше уровня Мирового океана, то оно выглядит, за достаточно длительный интервал времени, следующим образом:
ДМ = S + D ± V + I + А – G – W – В – F ± K + С.