Радиоспектр идет и дальше. Но для радиоволн с длиной порядка единиц метров и короче линия горизонта является почти непреодолимой преградой. Поэтому телевидение, радиовещание и радиосвязь на таких волнах ведутся только в пределах прямой видимости. Для того чтобы увеличивать зону прямой видимости, телевизионные антенны устанавливаются на очень высоких башнях. Длины волн метрового диапазона от 10 до 1 метра, а частоты - от 3·10 до 3·10 герц.
За метровыми следуют дециметровые волны длиной от 1 метра до 10 сантиметров; граничные частоты этого диапазона равны 3·10 и 3·10 герц. В этом диапазоне волн работают самые разнообразные радиотехнические устройства и, в частности, радиотелескопы, о которых дальше будет рассказано. Радиоволны, длина которых измеряется дециметрами, и еще более короткие волны имеют одну очень интересную особенность. Они могут распространяться не только в пустоте (в воздухе), но и в трубах, в так называемых волноводах.
Сантиметровые волны имеют длину от 10 до 1 сантиметра (частоты 3 ·10 до 3·10 герц). Этот диапазон принципиально не отличается от предыдущего. В нем, в частности, работают метеорологические радиолокаторы.
Граничные частоты диапазона миллиметровых радиоволн соответствуют 3·10 и 3·10 герц. Миллиметровые волны являются в настоящее время самыми короткими из тех, которые умеет генерировать радиотехника. В наши дни еще только приступили к их практическому освоению. Пока же они используются только для экспериментальных целей.
За диапазоном радиоволн простирается спектр световых волн.
Самым близким к радиоспектру является инфракрасный. Он ограничен волнами длиной 400 микронов и 760 миллимикронов, что соответствует частотам от 7,5·10 до 3,87·10 герц. Получать волны в этом диапазоне можно с помощью некоторых специальных устройств, но наиболее простой способ заключается в нагревании каких-либо тел. Обычные лампы накаливания имеют очень интенсивное излучение в области коротковолнового инфракрасного излучения. Инфракрасные лучи широко используют в науке, технике и быту. С их помощью приготовляют пищу, обогревают помещения; сушат различные виды продукции. В этих лучах удается делать фотографии и с помощью особых приборов видеть ночью.
Видимые лучи света не требуют особого пояснения. Стоит лишь напомнить, что диапазон волн лежит в пределах от 780 до 380 миллимикронов, что соответствует частотам от 3,87·10 до 8·10 герц. Из этих цифр видно, какую узкую полоску из всего спектра электромагнитных колебаний могут непосредственно ощущать наши органы чувств.
Диапазон ультрафиолетовых лучей начинается с волны 380 миллимикронов, что соответствует частоте 8·10 герц, и простирается до волн длиной 40 ангстрем и даже короче. Частота на волне 40 ангстрем равна 7,5·10 герц.
Ультрафиолетовые лучи, как и инфракрасные, широко применяются в науке и технике наших дней. С их помощью обнаруживают различные минералы, делают точнейшие химические анализы, стерилизацию пищи и лекарств.
Они используются в фотографии, судебной экспертизе, в светотехнике для возбуждения свечения люминесцентных красок. Ими широко пользуются и в медицине.
Шкала спектра электромагнитных колебаний.
Кстати, ультрафиолетовые лучи хоть и неправильно, но и не случайно называют кварцевыми. Дело в том, что обычные сорта оптического стекла становятся непрозрачными для ультрафиолетовых лучей уже на волнах порядка 2500 ангстрем. А стекла из чистого кварца пропускают эти лучи, поэтому баллоны ламп ультрафиолетовых источников света делаются из кварцевого стекла.
Но и кварц не может пропустить всего спектра ультрафиолетовых лучей: для волн короче 1800 ангстрем он тоже оказывается непрозрачным. В настоящее время наилучшим в этом смысле материалом считается флюорит, или плавиковый шпат, - он пропускает лучи с длиной волны 1200 ангстрем.
Рентгеновский участок спектра соседствует с ультрафиолетовым. Частоты рентгеновских излучений лежат в пределах от 6·10 до 3·10 герц, что соответствует волнам от 493 до 0,1 ангстрема. Некоторые области применения рентгеновских лучей вам хорошо известны. Они используются во всех случаях, когда надо посмотреть сквозь что-то, непрозрачное для других лучей. Поэтому их применяют для обнаружения внутренних дефектов в металлах, для различных исследований, основанных на явлениях дифракции рентгеновских лучей в кристаллах различных веществ.
К сожалению, в природе не существует таких материалов, которые могли бы преломлять рентгеновские лучи так, как стекловидимые. Поэтому оптические устройства типа объективов не могут быть для них созданы.
И, наконец, последний из известных в настоящее время науке участков спектра электромагнитных колебаний - участок гамма-лучей. Их испускают атомы радиоактивных элементов; гамма-лучи возникают и при некоторых видах взаимодействия элементарных частиц. Частота гамма-излучения начинается от 6·10 герц, чему соответствует длина волны 0,428 ангстрема.
О коротковолновой границе гамма-излучения говорить трудно. С каждым годом она отодвигается в область все более коротких волн. Так, в излучениях, приходящих из космического пространства, обнаружены гамма-лучи с длиной волны порядка 0,0001 ангстрема.
Проникающая способность гамма-лучей еще более высокая, чем у рентгеновских. Поэтому их часто используют в тех случаях, когда рентгеновские лучи не в состоянии "пробить" исследуемый образец. Кроме того, для получения гамма-лучей достаточно иметь лишь радиоактивный изотоп, хранящийся для безопасности в контейнере, в то время как для получения рентгеновских лучей требуется весьма сложный и громоздкий рентгеновский аппарат. Гамма-лучи применяются также при некоторых химических процессах.
Необыкновенные хвосты
Библейских пророков более всего привлекали ужасы. Мор, голод, разграбление городов, гибель народов были любимейшими темами их прорицаний.
Пророки ссылались на божьи "знамения": радуги, солнечные затмения и на другие небесные явления как на вестников несчастья. Не мудрено, что и "хвостатые звезды" - кометы, напоминающие суеверным людям карающий меч, - были зачислены "в штат" зловещих вестников, И их появление действительно наводило ужас на религиозных людей. И даже по сей день еще встречаются люди, верящие, что комета - предвестница войны.
Небесная странница - комета. Ее хвост всегда направлен в сторону от Солнца.
Необычный вид и сравнительно редкое появление на нашем небосводе этих небесных странниц издавна привлекали внимание ученых к кометам. Предметом особого изучения явились их необыкновенные хвосты. Тем более, что их поведение казалось наблюдателям очень странным. Дело в том, что хвост кометы не тянется за ней, оставаясь постоянно сзади головной части, а всегда находится на прямой, соединяющей головную часть кометы и Солнце, и направлен в сторону, противоположную ему.
Знаменитый астроном Кеплер еще в начале XVIII века высказал предположение, что подобная ориентация кометных хвостов может быть объяснена тем, что солнечные лучи оказывают давление на освещенные тела.
Максвелл в своих теоретических исследованиях пришел к такому же выводу. Но на сей раз это была не просто блестящая догадка, а теоретическое положение, подкрепленное точными вычислениями. По расчетам Максвелла получалось, что отвесные лучи солнечного света давят на 1 квадратный метр абсолютно черной (совершенно неотражающей) поверхности с силой 0,4 миллиграмма, а на зеркальную поверхность - с силой 0,8 миллиграмма. Разумеется, сила светового давления зависит от мощности светового излучения и от расстояния между источниками света и поверхностью, на которую падают лучи. Чем мощнее источник, гем больше давление; чем больше расстояние, тем давление меньше. Поэтому цифры, приведенные выше, не являются абсолютными. Они вычислены для случая, когда источником света является Солнце, а расстояние равно тому, на которое Земля отстоит от него.
Факт светового давления имеет принципиальное значение для науки: он открывает завесу еще над одним очень важным свойством света. Поэтому экспериментальное доказательство правильности теоретических выкладок было бы чрезвычайно существенным вкладом в физику. Но такой эксперимент оказался до крайности сложным и трудоемким - ведь измерять приходилось ничтожные по величине усилия.
Первым, кому удалось провести эти тончайшие измерения, был профессор Московского университета Π. Н. Лебедев. В 1899 году он измерил давление света на твердые тела, а в 1909 году разрешил еще более трудную задачу - измерение давления света на газы.
Схема установки Π. Н. Лебедева. Ось с лопастями, нарисованная отдельно, подвешивалась в стеклянном цилиндре. На лопасти направляли свет яркой лампы. Под давлением света ось с лопастями поворачивалась на некоторый угол.
Эти работы принесли Лебедеву мировое признание; многие университеты и научные общества избрали его своим почетным членом.
Результаты исследований подтвердили факт светового давления и точность расчетов Максвелла. Основываясь на этом факте и исследованиях Лебедева, астрономы смогли точно изучать влияние солнечного света на хвосты комет и даже определять массу частиц, образующих хвосты. Не менее интересным и важным для науки явился вывод, сделанный астрономами, о том, что световое давление, возможно, устанавливает естественный предел для размеров звезд. Масса звезды не может превышать некоторой, хотя и громадной, но конечной величины, так как в противном случае световое давление раскаленных внутренних областей звезды взорвет ее изнутри.
Мы помним, что волновая теория победила корпускулярную только после того, как опытным путем были установлены такие факты, как дифракция и интерференция. Эти факты невозможно объяснить с точки зрения корпускулярной теории, зато волновая теория великолепно с ними согласуется. Что же в этом смысле можно сказать о световом давлении? Оно было выведено и исчислено Максвеллом, создавшим свою электромагнитную теорию на основе волновых представлений о природе света, и, следовательно, полностью подтверждает их справедливость. Однако факт светового давления относится к числу тех, которые не противоречат и корпускулярным представлениям. Более того, на основании опытов Лебедева сторонник корпускулярной теории может сделать вывод, что свет имеет массу, и даже определить ее величину!
Мельчайшие из мельчайших
Наука никогда не заняла бы подобающего ей места, если бы с самого зарождения не требовала глубокого осмысления и точного определения даже самых простейших, кажущихся совершенно очевидными понятий. Вот, например, определения белого, прозрачного и черного тел, приемлемые для науки:
Тело, отражающее все лучи света, падающие на него, называется идеально белым.
Тело, пропускающее без поглощения все лучи проходящего сквозь него света, называется идеально прозрачным.
Тело, целиком поглощающее падающие на него лучи света, называется идеально черным.
В природе не существует ничего идеального. Нет и таких тел, которые полностью отвечали бы приведенным определениям, но зато есть очень много тел, которые довольно близки к ним. Так, некоторые химические соединения отражают до 98 процентов света; не слишком толстые слои стекла или горного хрусталя в широком диапазоне световых волн почти идеально прозрачны; некоторые сорта черного бархата поглощают до 99,7 процента падающего света.
Приведенные определения вряд ли у кого вызовут возражения, хотя бы потому, что они нисколько не противоречат повседневному опыту. Основываясь на этом опыте, мы привыкли считать белым то тело, которое излучает много света, а черным - не излучающее вовсе.
Солнце - ослепительно белое, а отверстие в закопченной печной трубе - ослепительно черное.
На первый взгляд кажется, что наше житейское понимание белого и черного нисколько не отличается от физического. Но на самом деле такое противоречие есть. В обиходе мы не замечаем его потому, что не совсем правильно пользуемся глаголами "отражать" и "излучать". Часто подменяем один из них другим, не видя особой разницы. А она с точки зрения физики имеет принципиальное значение.
И каждому из этих слов физика приписывает совершенно определенное действие.
Отражать - значит отбрасывать назад, вовне, лучи некоторого постороннего источника света, падающие на поверхность тела. При идеальном отражении температура тела не изменяется, не изменяется и запасенная в этом теле тепловая энергия.
Излучать - означает отдавать вовне путем испускания лучей собственную энергию. При излучении температура тела, его запасы тепловой энергии уменьшаются. Для того чтобы излучение не прекращалось, необходимо восполнять эту убыль энергии, а для этого требуются какие-то источники энергии. Например, электрическая батарея для лампочки в карманном фонаре или ядерные реакции на Солнце.
Что же в таком случае означает глагол "поглощать"?
С точки зрения энергетической поглощение следует понимать как действие, обратное излучению.
При поглощении энергия тела увеличивается, а при излучении, наоборот, уменьшается.
Таким образом, идеально белое тело в определенных условиях не поглощает и не излучает энергии. То же можно сказать и об идеально прозрачном теле. Зато идеально черное тело, являясь наилучшим поглотителем лучистой энергии, оказывается в то же самое время и наилучшим ее излучателем.
С непривычки такое утверждение может показаться ошибочным. Но это твердо установленный наукой факт. Еще более странным покажется читателю утверждение, что Солнце тоже черное тело. Но, если вдуматься в точное определение черного тела, такое утверждение постепенно перестанет казаться парадоксальным. Ведь оно в понимании физиков означает лишь одно: если на Солнце попадают лучи от каких-либо внешних источников света, то есть от всех других звезд, эти лучи не отразятся от него, а будут полностью им поглощены.
Почему же все мы не видим Солнце черным, но в то же время не можем вынести его ослепительных лучей?
Только потому, что в солнечной массе выделяется фантастически большое количество энергии и эта энергия излучается Солнцем вовне.
Примерно 14 процентов всей солнечной радиации приходится на долю видимого света. Он-то и ослепляет нас. Именно благодаря ему Солнце воспринимается нами как белое. Но это нисколько не противоречит определению, данному физикой для черного тела, ведь в нем говорится лишь о поглощении падающих лучей, но не об излучении собственных. Вот и получается, что черное тело может ярко светиться и быть белым, но при этом оно обязательно должно поглощать все лучи, падающие на него от посторонних источников света.
Разницу в излучениях нагретых тел - белого, прозрачного и довольно темного - вы можете проверить сами. Для этого разогрейте в пламени газовой горелки стальной гвоздь, кусок алюминиевой проволоки и кусок стекла. Ярче всего будет светиться сталь, а алюминий и стекло - едва заметно.
Мы уже говорили, что в природе не существует ни идеально черного, ни идеально белого. Но ученые для научных целей все же создали прибор, обладающий свойствами идеально черного тела. Он так и называется в физике - "черное тело". Его конструкция представляет собой металлический полый шар или цилиндр с небольшим отверстием. В промежутках между двойными стенками шара или цилиндра заложены электронагревательные элементы. Поверхность внутренней полости черного тела для лучшего поглощения падающих лучей иногда чернят и делают шероховатой.
Роль собственно черного тела играет отверстие в шаре. Как известно, черное тело поглощает все падающие на него лучи. Именно такое же действие производит отверстие. Посмотрите на чертеж прибора, и вы убедитесь в том, что луч, прошедший в отверстие извне, уже не вернется назад. Он "запутается" во внутренней полости шара. Претерпевая многократные отражения от стенок шара, он при каждом из них будет частично поглощаться и в конечном счете поглотится ими полностью.