Физика и музыка - Глеб Анфилов 4 стр.


Придумывали и другие системы. Например, механически соединяли, разные инструменты так, чтобы они звучали от ударов по клавишам. Скажем, к клавесину добавляли тарелки, барабаны, литавры. Приспосабливали даже флейты и трубы. Но этот инструментальный гибрид был, конечно, сложен и неудобен.

Иногда появлялись необычайно странные конструкции. До сих пор остается загадкой "Золотой Дионис" - инструмент, построенный в начале XVIII века мастером Прокопием Дивишем. Судя по записям очевидцев, он имел 790 струн и допускал 130 изменений звука. Говорят, этот гигант был оснащен даже какими-то электрическими устройствами.

Чем дальше, тем больше высказывалось предложений и идей. Они сыпались, как из рога изобилия. Из музыкальных мастерских выходили новые и новые образцы клавишных инструментов.

Но лишь один из них выбрала и сохранила придирчивая история - ныне всем известное и всеми любимое фортепьяно.

ДЛЯ ТИШИНЫ И ГРОМКОСТИ

Имя создателя современной скрипки увековечено в поговорках, ему посвящены легенды, о нем написаны целые книги. А о творце фортепьяно знают только специалисты-инструментоведы, да и им известно очень мало. Слава прошла мимо этого замечательного мастера, хоть заслуги его огромны.

Бартоломео Кристофори служил смотрителем музея музыкальных инструментов во Флоренции. Всю жизнь он провел среди клавесинов и клавикордов и непрерывно думал об их улучшении. Отличный мастер, он скептически относился к гигантомании, которой в его время .заражалась клавирная техника. Чувствовал, что необходимо нечто простое и принципиально новое. Но только на склоне лет созрело в его голове изобретение, которому выпала судьба стать великим.

Замысел Кристофори выглядел просто. Не надо дергать за струны, как в клавесине, не надо поджимать их, как в клавикорде. Гораздо лучше будет ударять по струнам молоточками. Ведь силу удара можно менять, а значит, и варьировать громкость звучания струны.

Суть этой идеи не была новинкой. Еще в древних цимбалах струны возбуждались ударами. Задача заключалась .в том, чтобы связать движение молоточка, бьющего по струне, с нажимом клавиши. Сильный удар пальца по клавише должен повлечь за собой и сильный удар молоточка по струне, а легкое прикосновение пальца к клавише - легкий, нежный удар по струне. Это главное, чего предстояло добиться.

Никто не знает, сколько бессонных ночей провел Бартоломео, облекая свою мысль в сложный бесшумный механизм. Никто не знает, сколько вариантов пришлось забраковать, прежде чем появились образцы, удовлетворившие изобретателя.

В конце концов на каждую клавишу он решил ставить подвижное сочетание двух хитроумных систем деревянных рычажков, заканчивающихся легким молоточком, обтянутым кожей. Молоточек ударял по струне, а мягкий войлочный демпфер глушил ее, когда палец снимался с клавиши.

В 1709 году некий знатный посетитель музея во Флоренции увидел там четыре клавесина, оснащенных новой механикой. .То были инструменты Бартоломео Кристофори. Талантливый мастер дал им и имя "gravicembalo col piano e forte" - "клавицембалы с тихим и громким звуком". Так появился "тихогром" - "фортепьяно". Главное достоинство его было запечатлено в самом названии.

Кристофори считал свое изобретение далеко не законченным и не спешил трубить о нем на весь мир. Но это сделал один музыкальный журнал. И тогда, если верить слухам, в гости к изобретателю пожаловал сам Иоганн Себастьян Бах. Какое он вынес суждение, неизвестно, но после визита великого музыканта темпераментный итальянец схватил топор и безжалостно изрубил механику на очередном клавесине с "piano e forte". Тем не менее настойчивый Бартоломео довел свое изобретение до совершенства.

ЕГО ВЕЛИЧЕСТВО РОЯЛЬ

Кристофори умер в безвестности. Блистательного торжества своего детища он не увидел. Громкий и прозрачный звук фортепьяно аристократам казался грубым, резким. Даже в XIX веке новый инструмент встречал противников, да и не только среди глупцов. Его недолюбливал, к примеру, Генрих Гейне, считавший, что стучать по струнам молотками - занятие кощунственное.

К счастью, дело решали не поэты, а музыканты. Молоточковое фортепьяно благословили Бах, Моцарт, Бетховен, Мощность звука, богатство интонации открыли ему дорогу в большие залы - к широкой публике. И народу пришелся по вкусу прекрасный, неслыханный прежде звонкораскатистый голос, который то гремел громом, то затихал до тончайшего пианиссимо. На фортепьяно впервые зазвучала революционная "Марсельеза". Оно стало рабочим инструментом композиторов, поселилось в домах горожан. Начало быстро развиваться искусство фортепьянной игры. Великие пианисты, плеяду которых возглавил Ференц Лист, стали в один ряд с великими певцами и скрипачами.

И этот громкий успех каждодневно поддерживала работа музыкальных мастеров. Они дня не сидели сложа руки.

Сколько коллективных усилий соединила в себе современная фортепьянная механика!

Основанная Кристофори, она ныне отточена до мельчайших деталей. Почти неуловимые нюансы ударов по клавишам нынешний рояль в полной сохранности передает струнам. Он не "захлебнется" от самых дробных "тремоло" - повторений одного звука.

Замечательным событием было изобретение фортепьянных педалей, особенно правой, освобождающей струны от заглушающих демпферов. Протяжность созвучий, их сложение, обогащение аккордов, усиление, изменение тембра звука - вот как много дала одна только правая педаль!

Преобразилась и "струнная одежда" - стала прочнее и наряднее. Латунь получила отставку. Теперь струны делают из специальной стали и очень тщательно вырабатывают. Их стало больше, натяжение их увеличилось, ибо, сильно натянутые, они звучат гораздо лучше.

Как вы думаете, какое усилие развивают теперь все струны рояля? Двадцать тысяч килограммов! Старая деревянная рама от такого напряжения лопнула бы не задумываясь. Поэтому она усилена надежной чугунной конструкцией.

Расположены струны тоже по-другому: не одним рядом, как прежде, а двумя и даже тремя скрещивающимися. Это экономит место, сохраняя необходимую длину струп.

В первых же фортепьяно обновилась дека. По сравнению со старинной клавесинной она стала тоньше, прочнее, звонче. Моцарт в свое время восхищался, как ловко выделывал эту "гармоническую доску" фортепьянный мастер Штайн. "Изготовляя ее, - писал Моцарт, - он выставляет ее на воздух, на солнцепек, под дождь, под снег, всем чертям на расправу, для того чтобы доска растрескалась. Тогда с помощью пластинок и клея он наполняет трещины. Когда гармоническая доска так приготовлена, можно ручаться, что ей ничего не сделается".

В наши дни деке посвящены целые научные исследования. О ее материале, толщине, размерах, конфигурации ученые пишут диссертации. Еще бы, именно она - главная деталь звуковой системы рояля.

Некоторые мастера отваживались и на коренную переделку фортепьяно. Ставили его "на дыбы", соединяли пару инструментов в один, изобретали новые клавиатуры. Но столь серьезная ломка традиционного строения инструмента не увенчалась успехом. Исключение составляет только изобретенное в 1880 году и всюду понравившееся пианино. Для роялей же, даже весьма оригинальных - автоматических, электрифицированных, - по-прежнему основой служит испытанная временем система Кристофори. И через сто пятьдесят лет после смерти замечательного изобретателя на его родине, в Падуе, был наконец поставлен памятник этому выдающемуся человеку.

...Вот и окончилось наше путешествие в историю музыкальных инструментов - короткое и поверхностное, как у туристов, приехавших на неделю в большую страну. Но, пожалуй, главное мы успели рассмотреть - увидели, как тесно срослось развитие музыки с прогрессом музыкальной техники. Каждый новый инструмент появлялся в ответ на требования музыкантов и открывал новую страницу в искусстве музыки. Лютня, скрипка, орган, клавесин, фортепьяно - это целые эпохи в музыкальной истории Европы.

Мы убедились и в том, как долго и трудно пытливая человеческая мысль пробивалась к технике современного оркестра.

На первых порах люди не ведали даже, что такое звук, не знали, почему он возникает, по каким причинам меняется. Бездна времени уходила впустую, понапрасну терялась масса сил. Открытия совершались случайно, вслепую, на ощупь.

Но настал день, и на помощь музыке пришла наука.

ГЛАВА 2

КАК ПОЛУЧАЕТСЯ ЗВУК

Что крепче всего на свете? Что быстрее всего? Что слаще всего? Герои старинных сказок проявляют чудеса сообразительности, отгадывая такие загадки.

Читателям этой книжки тоже задается загадка: что мягче всего на свете?

Думаете, перина? Подушка? Нет, воздух.

Конечно же! Воздух податливее и мягче пуха. Лучшие матрацы - надувные.

Ну, а что на свете самое упругое?

Не пружины и не резинки, а все тот же воздух. Несмотря на свою мягкость, он чрезвычайно упруг. Не будь этого, вы не надували бы им свои мячи: они наотрез отказались бы прыгать, будто набитые ватой.

Упругость "сверхмягких" тел - газов - в свое время удивляла физиков и служила поводом для горячих споров. Недоумения разрешил Михаил Васильевич Ломоносов. Виновником оказалось беспорядочное движение газовых молекул. Бомбардируя стенку сосуда, вмещающего газ, они создают давление, которое упрямо борется со сжатием.

Итак, наш мир погружен в огромный упругий океан. И именно поэтому наш мир полон звуков.

Хлопком в ладоши вы быстро сжимаете воздух. Он благодаря своей упругости тут же расширяется и сдавливает соседние участки атмосферы. Те, сжавшись, в свою очередь, стремятся расшириться - и все дальше распространяется невидимая волна. А достигнув нашего уха, она ударяется о барабанную перепонку и создает ощущение, которое мы называем звуковым.

Словом, звук есть упругие волны, бегущие в воздухе. Это люди знают давным-давно. Еще две тысячи лет назад римский архитектор Витрувий так точно описал в своей книге распространение звука, что самый строгий из современных учителей физики поставил бы ему пятерку.

Но нас интересует не всякий звук, а только музыкальный. В чем его отличие?

Специалисты говорят: волчий вой и комариный писк - звуки музыкальные, а барабанный бой и стук кастаньет - просто шум.

Барабанщики, конечно, недовольны. Но ничего не поделаешь, такой уж приговор вынесла наука. К музыкальным звукам она отнесла те, которые обладают определенной высотой. И вместе с пением скрипки в эту поэтическую компанию затесался паровозный гудок.

Ну, а как звук становится музыкальным, как он приобретает высоту? Очень просто. Надо, чтобы упругие воздушные волны отправлялись в путь не беспорядочно, а строго "по расписанию". Если воздух пронизывается ровной грядой волн, бегущих друг за другом на равных расстояниях, то ухо слышит непрерывный звук определенной высоты. И чем чаше следуют одна за другой волны, чем они короче, тем тоньше звук. С повышением частоты он от самых низких восходит к самым высоким. О таком подъеме стоит рассказать особо,

СНИЗУ ДОВЕРХУ

Лет тридцать назад в одном из лондонских театров готовилась к постановке пьеса, действие которой по ходу спектакля переносилось в далекое прошлое. Режиссер хотел подчеркнуть необычайную обстановку оригинальным сценическим эффектом. Но каким? К переменам освещения все привыкли, музыка заглушила бы слова актера. И вот физик Роберт Вуд посоветовал использовать инфразвук - сверхнизкий звук, не слышимый человеком, но при достаточной силе создающий, как уверял Вуд, ощущение "таинственности".

Ученый собственноручно изготовил источник инфразвука- громадную органную трубу. И на очередной репетиции ее опробовали. "Последовал неожиданный эффект, - вспоминает журналист-очевидец, - вроде того, который предшествует землетрясению: задребезжали окна, зазвенели стеклянные люстры. Все старинное здание начало дрожать, ужас прокатился по залу. Пришли в смятение даже жители соседних домов".

Режиссер, понятно, испугался и распорядился, чтобы "такую-сякую" органную трубу немедленно выкинули.

Случай в лондонском театре - единственная попытка использовать инфразвуки в искусстве. Науке же они служат исправно. Есть приборы, способные чутко улавливать инфразвуки. С помощью таких аппаратов геофизики предсказывают штормы на море, изучают подземные толчки.

Наинизший из слышимых человеком музыкальных звуков имеет частоту 16 колебаний в секунду. Он извлекается органом. Но применяется не часто - слишком уж басовит. Разобрать и понять его трудно.

Зато 27 колебаний в секунду - тон вполне ясный для уха, хоть тоже редкий. Вы услышите его, нажав крайнюю левую клавишу рояля.

Следующий любопытный тон - 44 колебания в секунду, абсолютный "нижний" рекорд мужского баса, поставленный в XVIII веке певцом Каспаром Феспером. В наши дни такой звук берет англичанин Норман Аллин.

Поднимаемся дальше. Вот 80 колебаний в секунду - обычная нижняя нота хорошего баса и многих инструментов. Удвоив число колебаний (повысив звук на октаву), приходим к тону, доступному виолончелям, альтам. Здесь отлично чувствуют себя и басы, и баритоны, и тенора, а женские контральто,

А еще октава вверх - и мы попадаем в тот участок диапазона, который буквально "кишит" музыкой. Тут работают почти все голоса и музыкальные инструменты. Недаром именно в этом районе акустика закрепила всеобщий эталон высоты тона, тот самый, что каждую пятницу передается по радио: 440 колебаний в секунду ("ля" первой октавы). Это как бы гвоздь, намертво закрепивший всю систему музыкальных тонов для настройки инструментов, игры, нотной записи.

Вплоть до 1000-1200 колебаний в секунду звуковой диапазон полон музыкой. Эти звуки - самые слышные. Выше следуют менее населенные "этажи". Легко взбираются на них лишь скрипки, флейты да такие универсалы, как орган, рояль, арфа. И полновластными хозяйками выступают здесь звонкие сопрано.

Вершины женского голоса забрались еще дальше. В XVIII веке Моцарт восхищался певицей Лукрецией Аджуяри, которая брала "до" четвертой октавы - 2018 колебаний в секунду. Француженка Мадо Робен (умершая в 1960 году) пела полным голосом "ре" четвертой октавы - 2300 колебаний в секунду.

Еще несколько редких, нехоженых ступенек (доступных, разве мастерам художественного свиста) - и музыкальный диапазон кончается. Звуки выше 2500-3000 колебаний в секунду в качестве самостоятельных музыкальных тонов не используются. Они слишком резки, пронзительны. Кто же станет писать музыку, состоящую из свистов да комариных писков!

А с 16 000-20 000 колебаний в секунду начинается недоступный уху человека сверхвысокий ультразвук. Профессий у него масса. Он сверлит камень, счищает ржавчину, измельчает материалы, стирает белье, измеряет глубину рек и морей, лучше рентгена просвечивает тела. И все это он делает молча.

СЛАДКОЗВУЧНЫЕ ПРИБОРЫ

Теперь мы знаем, что такое звук, каким он бывает в музыке. И вместе с тем мы поняли, чем всю жизнь занимаются музыканты: они просто-напросто трясут воздух - чаще и реже, сильнее и слабее. Именно этой цели служат их орудия, сформировавшиеся на протяжении многотысячелетней истории.

О них и пойдет речь дальше.

Как сказано в "Технической энциклопедий", любой музыкальный инструмент есть всего-навсего "физико-акустический прибор", сообщающий окружающей атмосфере различные сочетания колебательных движений. Видимо, под ту же категорию подпадает и голосовой аппарат певца.

Едва ли читателя порадует приведенное определение. Не очень идет принцессе скрипке называться физико-акустическим прибором. Но выбора нет, такова суть вещей. Если романтики и поэты хотят ее познать, им придется перестроиться на новый лад, ибо научные термины подстерегают нас и дальше.

Схему устройства музыкального инструмента физики тоже поясняют своими словами: он представляет собой объединение вибраторов и резонаторов. И, чтобы понять физическую подоплеку музыки, нам придется выяснить сущность обеих частей.

Начнем с вибраторов. Их вокруг легион. Качели в городском саду - вибратор, маятник ваших часов - вибратор, дверная пружина - вибратор. Таким названием наука награждает любое тело, способное колебаться от толчка, удара, трения.

А если вибратор дрожит достаточно часто, совершает десятки, сотни, тысячи размахов в секунду, то он может послать в воздух звуковые волны и поэтому именуется акустическим. Это и есть родина, место физического рождения всей инструментальной да и вокальной музыки.

Акустический вибратор всегда упруг. Из хлебного мякиша его не вылепишь. Зато металлические язычки, тростниковые пластинки, натянутые пленки, жилы, проволочки отлично идут в дело. Их и ставят в трубы, скрипки, барабаны. Есть музыкальные инструменты, которые составлены только из вибраторов - ксилофоны и колокольчики, гонги и тарелки. А в горле певца вибратором служат упругие мышечные связки.

Самый распространенный вибратор - струна. И в ее поведении нам предстоит разобраться поподробнее.

Нетерпеливый читатель может проявить недовольство. К чему-де тратить время на пустяки? Что может быть проще струны? Раскачивается натянутая пить - и все тут.

Не спешите. В том, что кажется простым, порой скрыто немало сложного. Разгадке струны посвятили свой труд многие физики и математики. Главный же вклад в мудреную теорию ее колебаний внес замечательный английский ученый конца XVIII - начала XIX века Томас Юнг. С ним и его исследованиями мы познакомимся в первую очередь и ради этого отправимся... в цирк.

ФИЗИК НА КАНАТЕ

Залит огнями цирк Фракони. Резвый скакун выносит на арену изящного наездника. Стоя в седле, он приветливо машет рукой и принимается за акробатические трюки. Публика неистовствует. А наездник прямо с лошади прыгает вверх, как кошка взбирается на длинный канат и, плавно балансируя, танцует над головами восхищенных зрителей. Ловкий актер срывает восторженную овацию. Его несколько раз вызывают, к его ногам падают цветы.

А через час он сидит в своем кабинете, в окружении книг и физических приборов. Цирковой акробат склонился над листом бумаги, испещренным математическими символами. Знаток циркового каната, он трудится над теорией его маленькой сестры - струны.

Этот ученый-циркач и есть Томас Юнг, удивительный человек, выбравший девизом своей жизни изречение: "Всякий может делать то, что делают другие". Во исполнение этого нелегкого правила он стал не только цирковым артистом. Глубоко почитая живопись, Юнг до малейших подробностей знал таинства мастерства художников. Мало того: он был и музыкантом - играл почти на всех известных в ту пору инструментах.

Двух лет от роду Томас умел читать, пяти - учился литературе у бристольского профессора, семи - постиг секреты тригонометрии и геодезической съемки, с девяти до четырнадцати - проштудировал античных классиков, выучил пять иностранных языков, овладел токарным ремеслом и дифференциальным исчислением!

Назад Дальше