История и философия науки - Надежда Бряник 14 стр.


Возникновение описанных выше направлений привело к тому, что математика к 30-м гг. XX в. утратила внутреннее единство: разные направления придерживались разных стандартов правильности доказательства теорем. К тому же вышеперечисленные направления, в свою очередь, распались на различные течения, что породило еще большую путаницу в понимании оснований математики.

Ситуация осложнялась и тем, что не были решены проблемы непротиворечивости и полноты математики. Хотя известные парадоксы и получали решения (по-разному в разных направлениях математики), но не было гарантии, что не возникнут новые. Проблема полноты аксиоматических систем сводится к тому, что в рамках принятой системы аксиом должна доказываться истинность или ложность всех осмысленных высказываний для определенной области математики.

В 1931 г. К. Гёдель доказал, что, во-первых, непротиворечивость аксиоматической системы не может быть установлена средствами самой этой системы на основе математических принципов, принятых различными школами в основаниях математики: логицистами, формалистами и представителями теоретико-множественного направления; во-вторых, он доказал теорему о неполноте аксиом, согласно которой, если система аксиом непротиворечива, то она неполна.

По общему признанию, эти открытия доказывали невозможность полной аксиоматизации научного знания. Любая система аксиом содержит утверждения, истинность которых устанавливается нестрогими методами.

Таким образом, решение проблемы обоснования привело математику к осознанию того, что она не может предложить науке некие абсолютно достоверные (доказанные в некотором абсолютном, строгом смысле слова) основания. Научное знание невозможно полностью формализовать, по крайней мере, на основе известной нам математики.

3.1.3. Математика и естествознание. Связь математики и естествознания возникает в эпоху Нового времени. Это стало возможным благодаря возникновению алгебры, что объясняется следующими обстоятельствами.

Во-первых, как уже было отмечено, для алгебры безразлична природа объекта. В алгебре величины выражаются буквами, последние связываются воедино некоторым уравнением, из которого и нужно найти неизвестную величину. Вместо алгебраических переменных можно подставлять физические, химические, экономические величины. Предметные области разные, а правила вычисления – одинаковые.

Во-вторых, для возникновения математического естествознания важной стала возможность представления функций алгебраическими формулами. Это позволило использовать математику для описания изменения и движения в природе. Идею описания движений с помощью формул выдвинул Галилей. Зная формулы и начальные условия, с помощью чисто алгебраических средств можно извлечь неисчерпаемое количество сведений о движении тела.

Именно алгебраический метод во многом задает характерные черты методологии классической науки, такие как достоверность, простота, механистичность, полнота. Как алгебра стремится к построению алгоритмов вычисления, так и классическое естествознание видит идеал своего метода в построении алгоритма, который позволил бы отличать истинное от ложного и получать новые научные истины без излишней траты умственных сил.

Математика становится универсальным языком науки, внутренней формой ее развития, где форма – это способ организации движения содержания. Именно математика делает научные теории относительно независимыми от эмпирии, а значит, и от множества аномалий, которые окружают каждую теорию. Первые математические модели, возникающие на базе той или иной теории, как правило, слишком просты и поэтому заведомо ограничены. В результате развитие теории происходит в направлении усложнения математического аппарата, способного представлять все более сложные и адекватные модели объектов исследуемой области.

Отличие новоевропейской науки от современной в контексте оценки роли математики заключается в том, что первая рассматривает математику как способ описания окружающего мира, природы, в то время как вторая возвращается в определенном смысле к идеям Античности. Реальность, изучаемая современной наукой, – то, что она считает существующим на самом деле, конструируется средствами математики. Тогда окружающий мир сам по себе в современной науке снова низводится на уровень иллюзий. Пространство окружающего мира кажется нам трехмерным, но современная физика оперирует понятием "конфигурационное пространство" с числом измерений больше трех; нам кажется, что мир состоит из обладающих вещественным субстратом макротел, но современная наука говорит нам, что в мире есть только энергия и движение. Материалистический (субстратно-вещный) реализм новоевропейского естествознания представляется современной науке наивным. Реальность современной науки – это реальность математических структур. И здесь мы снова возвращаемся к вопросу: что же значит быть реальным в математическом смысле слова? Реальность математических понятий, как уже было сказано выше, не определяется их связью с объектами окружающего мира. Мера реальности математических понятий и структур в естествознании определяется, во-первых, возможностью их преобразования в другие понятия и структуры. Так, если мы можем преобразовать геометрию Евклида в геометрию Лобачевского, то это показывает одновременно и ограниченность каждой из них, и меру их реальности. Во-вторых, мера реальности математического исчисления определяется широтой его применения. Чем шире область применения, тем сильнее вера в реальность предложенной математической структуры.

Таким образом, естествознание (в рассматриваемых случаях – физика) так же необходимо современной математике, как и она ему. Естественные науки дают математике область интерпретации, без которой она останется пустой интеллектуальной игрой, и поставляют проблемы, решение которых является одним из основных источников развития математики.

Особенности развития науки второй половины ХIХ и ХХ в. позволяют сделать вывод о том, что подобный характер носит связь математики и с другими подсистемами науки – техническими, социальными, гуманитарными. Так, в области экономических наук еще в середине ХIХ в. К. Маркс в "Капитале" и подготовительных рукописях к нему не только широко использует современный ему аппарат дифференциального и интегрального исчисления, но и задается вопросом об основаниях эффективности математики в других науках. На базе этих исследований были созданы так называемые "Математические рукописи К. Маркса". Почти через столетие итальянский ученый В. Вольтерра пишет работу "Математическая теория борьбы за существование". Сегодня активно разрабатываются такие области знания, как математическая экономика, математическая лингвистика, математическая биология и др. Но принцип использования математики во всех подсистемах науки тот же, что и в физике, он вытекает из особенностей математических структур и понятий, которые могут быть интерпретированы на самом разнообразном материале. Именно поэтому математическое моделирование, математические гипотезы, математическое предвосхищение приобрели в современной науке статус общенаучного метода математизации.

Взаимозависимость математики и технических наук приобретает особый характер с появлением вычислительной математики, которая является наукой, изучающей процессы управления, организации и передачи информации в сложных динамических системах. Существует тенденция отождествления вычислительной математики и кибернетики, в этом случае вычислительную математику определяют как раздел математики, изучающий проблемы, связанные с использованием компьютеров и современных информационных технологий.

У истоков вычислительной математики стоят такие выдающиеся математики, как Н. Винер, К. Шеннон, Дж. фон Нейман, А. Н. Колмогоров и др. Вычислительная математика включает такие разделы, как математическое программирование, исследование операций, теория игр, оптимальное управление, дискретная оптимизация, теория функциональных систем, комбинаторный анализ, теория графов, теория кодирования, управляющие системы, синтез и сложность управляющих систем, эквивалентные преобразования управляющих систем, надежность и контроль функционирования управляющих систем.

Важно отметить, что возникновение вычислительной математики было бы невозможно, если бы математики не обратились к другим областям знания, имеющим дело со сложно организованными системами: биологии, физиологии высшей нервной деятельности, экономике, социологии и др. Именно эти науки дают математике модели для постановки проблем и в определенной степени образцы для их решения. Понятия целенаправленности, целесообразности, оптимальности функционирования системы тоже приходят из этих наук.

В свою очередь, вычислительная математика привела к возникновению новых методов научного исследования, связанных прежде всего с анализом математических моделей. Во всех сферах современной науки возрастает роль моделирования, формализации, алгоритмизации. Это становится возможным при условии чисто функционального определения таких понятий, как жизнь, общество и его подсистемы, мышление и т. п., что предполагает абстрагирование от представлений о материальном носителе информации.

В самой математике это ставит задачи разработки методов решения типовых математических задач, возникающих при анализе математических моделей, а также развитие теории и практики программирования с целью упрощения работы на электронных вычислительных машинах.

Итак, философские проблемы математики обращают нас к фундаментальным основаниям теоретического познания – математика в чистом виде представляет нам способность человека рационально познавать окружающий мир, поэтому она становится предметом интереса не только самих математиков, но и философов, историков, психологов, лингвистов, социологов.

3.3. Философские проблемы техники и технических наук

3.3.1. История техники в контексте развития науки. Техника имеет столь же длительную историю, сколь и развитие человечества в условиях Земли. Но особый этап в ее развитии возникает тогда, когда она начинает развиваться на основе науки. Именно классическая наука оказалась неразрывно связанной с техникой своего времени, о чем свидетельствует развернувшаяся в классическую эпоху научно-техническая революция XVIII– XIX вв. Как сложилась взаимозависимость науки и техники, и что собой эта взаимозависимость представляет? Не входя в тонкости и детали вопроса, под техникой будем понимать совокупность средств (механизмов, машин), опосредующих отношение человека к миру с целью замены его (человека) как материального, энергетического и информационного источника действий. Еще в XVI и XVII в. машины и их проекты имели приблизительный характер, они не были точно рассчитаны, а были сделаны "вприкидку", "на глазок". Известный французский историк науки и техники А. Койре считает, что машины этого времени принадлежали миру "приблизительности". И поэтому им были переданы только наиболее грубые операции (такие как шерстобитные работы, перекачка воды, помол зерна или приведение в движение кузнечных мехов), все остальные виды работ выполнялись руками человека. Отечественный специалист в области истории техники А. Н. Боголюбов подтверждает подобную оценку состояния техники в указанный период. С его точки зрения, самый длительный этап в развитии техники был связан с тем, что создавали механизмы, заменяющие лишь физическую силу человека силой животных, огня, воды, ветра, натяжения и пр., поэтому они и не требовали особых расчетов. Он продлевает этот период еще на одно столетие – по XVIII в., но пишет также и о том, что уже в конце XVIII в. появляются технологические машины, которые предназначены для замены действия руки человека.

С изобретения прядильных машин (Джон Уайт, 1735 г.) началась история технологических машин. Вторая промышленная революция связана в первую очередь именно с их появлением. Вытеснение ручного труда шло постепенно: сначала из текстильного производства (прядильного и ткацкого), а затем из других сфер деятельности; появляется сельскохозяйственная, транспортная, горнодобывающая и другая техника, что, в свою очередь, стимулирует возникновение машиностроения, и уже к концу XVIII в. появляются машиностроительные заводы; во второй половине этого же столетия был изобретен паровой двигатель (1776), а столетие спустя – универсальный электродвигатель. Практически все отрасли производства к середине ХIХ в. начинают обслуживаться машинами. Отмеченные события имели значение не только собственно для мира техники. Все без исключения мыслители признают, что благодаря такому взрывообразному развитию техники в рассматриваемый период радикально меняется среда обитания сначала европейского человечества, а затем и жителей Земли в целом. По оценке К. Ясперса, "машинным ландшафтом" становится вся поверхность Земли.

Радикальные преобразования в развитии техники Нового времени происходят под воздействием науки. Именно взаимовлияние науки и техники во многом и придало данным феноменам те специфические черты, которые отличают науку и технику рассматриваемого периода. Исследователи истории техники и истории науки сходятся в признании разделительной линии между техникой, построенной на обыденном знании и навыках, с одной стороны, и техническими изобретениями, основанными на науке, с другой. По этому основанию проводят различение первой и второй промышленной революции. Если первая революция была связана с массовым внедрением технических изобретений, опирающихся на опыт и мастерство, то вторая – с инновациями, зависящими от использования науки. Этот вопрос – главная тема историко-технических изысканий А. Койре. При этом он не просто констатирует факт наличия перелома в истории развития техники, связанный с тем, что техническое творчество начинает зависеть от внедрения научных идей, а пытается по-философски объяснить его. Он отталкивается от особенностей знаний, с которыми связаны были технические изобретения западноевропейской культуры, и настаивает на том, что долгое время (и в Античности, и в Средние века) эпистемэ (наука) и технэ (техника) были, по существу, автономны и развивались параллельно друг другу. Этому положению дел находилось и философское обоснование в идее противопоставления науки как пассивного созерцания и умозрительного отношения к миру, и технэ как отношения, нацеленного на освоение и обладание миром.

Необходимость соединения этих полярных видов отношения к миру осознает уже Декарт, выражая тем самым веяние Нового времени. Для А. Койре замена опытных знаний и здравого смысла, с помощью которых изобретались технические средства, научными знаниями означала наступление этапа, который он называет "обращением эпистемэ на технэ", т. е. внедрением науки в технику. И тогда "мир приблизительности" сменяется "миром прецизионности" (миром точности). Для того, чтобы это произошло, в самой науке должна была произойти интеллектуальная революция, позволившая не только небесные, но и земные явления описывать с помощью математики; другими словами, появление в Новое время математической физики (в лице Галилея, Ньютона и др.), наряду с математической астрономией (которая существовала уже в Античности), позволило и земные события описывать строгим количественным языком математики.

Тенденция внедрения науки в технику постоянно возрастает, и одновременно происходит обратный процесс – технизация науки, поскольку научные исследования напрямую зависят от их технической оснащенности, представленной в разных ее проявлениях. Современному этапу свойственны срастание и неразрывность научного и технического творчества, и есть основания говорить о научно-технических феноменах, в которых трудно отделить научную составляющую от технической.

Нельзя не отметить, что взаимозависимость науки и техники – это решающий, но не единственный фактор, объясняющий то, что лежит в основе современной цивилизации. В ряду факторов, способствовавших реализации возможности, заложенной в синтезе науки и техники, называют и другие социальные факторы – свободную конкуренцию, рыночные механизмы, особый характер труда и норм правового регулирования и пр. Но использование достижений науки, в первую очередь естествознания, исследователи рассматривают как фактор первостепенного значения.

3.3.2. Инженерная и гуманитарная философия техники: технократизм и его критика. Инженерная философия техники (ИФТ) возникла на базе Союза немецких инженеров (СНИ) в 1856 г. В рамках этой организации были поставлены вопросы о сущности техники и технического знания, а также проблемы взаимосвязи классического университетского и технического образования.

Термин "философия техники" впервые был употреблен в названии книги Э. Каппа "Основания философии техники", вышедшей в 1877 г. Но только после Первой мировой войны философские вопросы техники стали активно обсуждаться в СНИ. Центральной фигурой в этих дискуссиях был Ф. Дессауэр, который в 1927 г. опубликовал книгу "Философия техники. Проблема реализации", а в 1956 г. книгу под названием "Спор о технике". В 1956 г. СНИ сформировал исследовательскую группу "Человек и техника". Она была разделена на рабочие комитеты по проблемам: "Педагогика и техника", "Социология и техника", "Философия и техника", "Язык и техника", "Религия и техника".

Союз немецких инженеров объединил крупнейших немецких инженеров и философов. Так, первым председателем группы "Человек и техника" был П. Кесслер, известный специалист в развитии транспорта в Брауншвейгском университете, вторым – К. Тухель, доктор философии и теологии, третьим – бывший директор гамбургского отделения германской железной дороги, доктор-инженер В. Хельберг.

Если суммировать философские достижения, по сути, очень разнообразных концепций инженерной философии техники, то можно отметить следующее. Для инженерной философии техники характерно отношение к технике как закономерному результату развития истории и культуры. Несмотря на то, что мыслители, объединившиеся в СНИ, ясно видят негативные последствия бесконтрольного развития и применения техники, у них отсутствуют апокалиптические настроения в ее отношении.

Техника коренится в природе человека. Человек от природы существо в определенной степени ущербное: он недостаточно силен, быстр, не обладает хорошо развитым зрением, слухом, обонянием для того, чтобы выжить в борьбе за существование. Техника – это заложенная в человеке способность изменять окружающий мир, приспосабливая его к своим потребностям. Определяя сущность техники, ИФТ сравнивает ее, во-первых, с природой, которая является рядоположенным технике способом существования человека (отсюда возникает дихотомия "естественное – искусственное"), и, во-вторых, с другими способами освоения человеком окружающего мира – наукой и искусством.

Природа и техника различаются и в известной степени противопоставляются уже в эпоху Античности.

Природа – это то, что имеет источник и начало движения в себе самом. Природа в Античности – это процесс целенаправленного движения от формы к форме. Техника – это то, что имеет источник и начало движения в мыслящей душе деятеля. Человек технически "улучшает" природу. В процессе производства человек способен достичь того, чего природа сама по себе достичь не способна. Это "улучшение", очевидно, осуществляется с точки зрения того, что полезно человеку.

Назад Дальше