А ведь кроме состава атмосферы и создаваемого им парникового эффекта есть и другие, неатмосферные факторы, влияющие на температурный режим Земли и определяющие ее температурные циклы.
Теперь самое время рассмотреть весь механизм формирования климата планеты и заодно ответить на второй политически некорректный вопрос: а имеет ли место быть то самое глобальное потепление, которым нас всех пугают?
"А про океан забыли"
Атмосфера – наиболее краткосрочный регулятор температуры на континентах, где мы живем. Воздух – быстрореагирующая среда. Например, извержение вулканов, может вызвать (и в земной истории вызывало) быстрое изменение климата. То же самое может произойти (и на Земле происходило) от столкновения ее с крупным астероидом.
Такие катаклизмы действительно могут вызвать резкое изменение климата, но через несколько лет выброшенная в атмосферу пыль осядет и система найдет новый баланс.
Но кроме атмосферных факторов изменения климата нужно учитывать "неатмосферные". Например, мировой океан, покрывающий большую часть поверхности планеты.
Океан является среднесрочным регулятором температуры. Вода – иная стихия, у нее свои циклы: холодная вода, уходящая в пучину на юге Гренландии осуществит свое "кругосветное путешествие" и "всплывет" только через полторы тысячи лет. Поэтому, на изменения температуры поверхности воды Мировому океану нужно гораздо больше времени, чем атмосфере.
Мировой океан "связан" с атмосферой, и их термическое, химическое и даже механическое взаимодействие, значительным образом влияют на температурный режим суши.
Хорошим примером такого взаимодействия является Гольфстрим.
Вы удивитесь, но при моделизации поведения течения Гольфстрим, на самом деле, в странах Западной Европы ожидается скорее всего не потепление, а серьезное похолодание (но об этом в конце книги).
Гольфстрим формируется в тропических широтах, где солнечная радиация максимальна, и его нагретая вода переносит часть этого тепла к берегам Западной Европы. Вот почему зима в Западной Европе гораздо более теплая, чем у нас в России.
Этот феномен – только один из многих "компенсационных" механизмов в системе авторегуляции климата на нашей планете. Поскольку климатические механизмы "инерционны", то компенсация может пойти дальше стартовой точки и даже вызвать обратный эффект для всей системы.
Еще одно замечание, касающееся концентрации СO2 в атмосфере и в Мировом океане. Тут наблюдается обратная причинно-следственная связь между температурой и концентрацией СO2. Чем теплее Мировой океан – тем больше СO2 переходит из воды в атмосферу. Принцип очень простой – тот же, что заставляет теплую бутылку с газированной водой (там тот же СO2) шипеть и пускать пузыри. Вполне возможно, океан нагревается и выпускает в атмосферу большее количество СO2. Об этом многие ученые говорят, то есть до сих пор непонятно – что причина, а что следствие в этой истории с углекислым газом.
Иначе говоря – суша, атмосфера и Мировой океан – это чрезвычайно сложная, уникальная система "сдержек и противовесов", созданная Природой. На протяжении миллионов лет эта система удерживает на поверхности Земли температурный режим, пригодный для жизни. Сводить эту гигантскую систему к одному фактору концентрации СO2, а, вернее, к той его части, которую выделяет человек, – неразумное упрощение.
"И про солнце тоже не вспомнили"
Наконец, как можно забыть об основном и наиболее долгосрочном факторе климатических процессов на нашей планете – о Солнце. Оно ежедневно "сжигает" миллионы тонн водорода, преобразуя каждый его килограмм в энергию, равную 8 миллионам тонн нефти.
Современный температурный режим Земли есть результат того, что до нас доходит всего лишь 0,7 % энергии (менее 1 %), полученной в этой ядерной топке. А если завтра будет чуточку больше или чуточку меньше?
В физике принято говорить о "солнечной константе". Но на самом деле, с точки зрения энергетики, изначальное солнечное излучение непостоянно, его интенсивность меняется по не понятым пока наукой циклам, предположительн связанным с темными пятнами на его поверхности.
Эти циклы в активности Солнца были замечены уже давно. Их пик определяется большим количеством так называемых "темных пятен" на солнечной поверхности (обычно от 100 до 300 пятен). Темными пятнами называют зоны, более холодные, чем средняя температура поверхности звезды. Их температура около 4000 градусов по Цельсию, что значительно меньше "обычных" для нашей звезды 6000 тысяч градусов на поверхности фотосферы. Средний цикл появления и пропадания темных пятен на Солнце – от 9 до 13 лет (поэтому их называют в астрологии 12-летними циклами…).
Цикл солнечных пятен в европейской науке был впервые отмечен астрономом-любителем, а по профессии фармацевтом, Генрихом Швабом (в честь которого этот феномен и был впоследствии назван). Хотя есть доказательства того, что астрономы в Древнем Египте и в Древнем Китае подсчитывали солнечные пятна и делали выводы о грядущей погоде, разливах рек (что может иметь некий смысл).
Но вернемся ближе к современности. Точный подсчет солнечных пятен ведется в Европе ежегодно с 1610 года, что дает хорошую возможность проследить связь между солнечной активностью и климатом на Земле.
С XVII века замечено два ярко выраженных периода пониженной солнечной активности:
• полное отсутствие пятен в течение 70 (!) лет – с 1640 по 1720 год (этот период в известной нам жизни Солнца называют "минимумом Маундера");
• очень малое количество солнечных пятен в течение 40 лет – с 1790 по 1830 год (период, называемый минимумом Далтона).
Период минимума Маундера европейская история вспоминает как "малый ледниковый период": ледники в Швейцарских, Французских и Итальянских Альпах поглотили десятки горных деревень, Темза каждую зиму была покрыта льдом, мадам де Севинье в своих знаменитых письмах друзьям и дочери сетовала, что летом приходится топить дровами. Действительно, таких холодных лет в Европе никогда не было.
Годы минимума Далтона были чуть теплее в Европе, но это не спасло победоносную армию Наполеона, которая замерзла в России.
Казалось бы – чем больше пятен на Солнце, тем меньше должно быть излучение, но замеры электромагнитного излучения показывают зависимость обратную. Это еще один парадокс – чем больше на Солнце темных пятен, тем сильнее оно нас греет. Феномен обратной связи принято объяснять следующим образом – контуры темных пятен испускают очень интенсивное излучение, поэтому при наличии пятен общее солнечное излучение выше, чем без них.
Известно, что в 2009 году начинается новый цикл – американские ученые сигнализировали о начале появления солнечных пятен. С этой точки зрения, следующее десятилетие Солнце будет нагревать Землю сильнее.
Связь между солнечными циклами и климатом на Земле – очевидна. Ее подсчет до сих пор вызывает споры. По разным подсчетам, разница солнечного излучения между минимумом Маундера и началом XXI века – всего лишь от 0,25 % до 0,5 % (!). Так мало нужно Солнцу, чтобы нас "нагреть" или "заморозить".
Кроме того, при изменении солнечной активности меняется "солнечный ветер" и электромагнитное поле Земли. Электромагнитное поле, его еще называют "магнитосфера", – это еще один "скафандр", который наша планета использует для защиты от космического излучения.
Космическое излучение – это путешествующие в космосе частицы с высоким зарядом энергии. В основном это ядра атомов водорода (протоны) и ядра атомов гелия (альфа-частицы). Эти частицы несут электрический заряд, и поэтому могут быть захвачены электромагнитным полем Солнца или Земли. Попав в атмосферу, эти заряженные частицы сталкиваются с атомами составляющих ее азота и кислорода, что дает рождение радионуклидам (таким как углерод-14). Но самое важное, что эти частицы являются основной причиной образования ОБЛАКОВ.
В периоды низкой солнечной активности меньше космических лучей притягивается Солнцем и большее количество частиц попадает в земную атмосферу. Формируется больше облаков, увеличивается земное альбедо. Дальнейший механизм вам понятен. Больше солнечная активность – меньше облаков. Этот механизм влияния космического излучения на образование облаков был окончательно подтвержден совсем недавно – в 2005 году. Замеры ведутся только с 1985 года.
Отметим, что электромагнитное поле Земли, как и все, упоминаемое в этой книге, – не постоянно. Его интенсивность меняется. А еще периодически магнитосфера переворачивается.
Кроме того, дистанция, разделяющая Солнце и Землю, меняется так же, как и угол наклона земной оси, что изменяет общее количество излучения, "полученного" планетой, и влияния "солнечного ветра" на земное электромагнитное поле.
А Земля еще и вертится…
Да, она все-таки вертится, и это тоже влияет на климат.
Принято считать, что дистанция от Солнца до Земли – 150 миллионов километров, то есть одна астрономическая единица (вспомним парсеки братьев Стругацких…).
Но на самом деле это, как и вся информация, доносимая до народных масс, – упрощение. Несмотря на то что небесная механика имеет много "констант", земная орбита вокруг Солнца – непостоянна. Гравитация тел Солнечной системы (в основном это влияние Луны, как самого близкого тела, и Юпитера, как самого массивного) периодически меняет ее эксцентричность. Эксцентричность эллиптической орбиты Земли варьируется с коэффициэнтами от нуля до 7 %.
Изменение эксцентричности земной орбиты – долгосрочный и периодичный феномен, с определенным циклом примерно в 100 тысяч лет (от 80 до 100) и с предполагаемым наукой циклом в 400 тысяч земных лет. Этот цикл и теория его влияния на климат Земли ("теория астрономического форсажа") были описаны сербским математиком Милютином Миланковичем, и впоследствии развиты и проверены французским климатологом Андрэ Берже. Отметьте пока просто, что эти астрономические циклы земной орбиты в 100 000 лет на удивление точно совпадают с периодичностью ледниковых периодов на протяжении последнего миллиона лет.
Вариация эксцентричности до 7 % кажется небольшой, но она, с вышеуказанной периодичностью, меняет дистанцию нашей планеты от "солнечной печки" от 129 до… 187 миллионов километров, то есть на треть (!).
А это – огромная дистанция с точки зрения энергетического баланса: энергия, полученная Землей в разных точках, может изменяться от 10 до 30 % (!) в зависимости от выбранного Землей орбитального цикла, то есть от удаленности от Солнца. Этот долгосрочный энергетический плюс или минус на порядок превышает влияние СO2.
Еще один важный момент для понимания глобального потепления, о котором почему-то никто не говорит: на протяжении миллионов лет все существенные изменения температуры (потепления и похолодания) происходили только в Северном полушарии, от полюса до широты Гренландии. В Южном полушарии и в Антарктиде эти изменения температуры были либо слабыми, либо отсутствовали вообще.
Объяснений этому факту пока нет, но, скорее всего, это связано с углом наклона нашей планеты. На самом деле, земная ось (воображаемая линия, вокруг которой планета вращается) наклонена.
Именно поэтому интенсивность полученного солнечного излучения неодинакова в Северном и Южном полушариях. Зима в Южной Америке, на одинаковых широтах с Северной, гораздо более мягкая, а лето – менее жаркое. Иначе говоря, климат в Южном полушарии более мягкий, чем в Северном.
Наклон земной оси (наша планета лежит "на боку" после столкновения с гигантским метеоритом в еще совсем древние времена) принято считать константой – 23 градуса, но это тоже упрощение.
На самом деле, наклон земной оси непостоянен, он меняется между 22 градусами и 25,5 градуса с периодичностью в 40 000 лет.
Это меняет количество солнечной энергии, полученной на полюсах (в экваториальной зоне наклон земной оси практически не меняет интенсивности солнечного излучения).
Но и это еще не все: земной шар – не есть правильный шар, а шар "приплюснутый". Сила гравитации, приложенная к "приплющенной" планете, меняет ее ось. Это происходит с периодичностью в 25 000 лет. Земля, как гигантская юла, меняет направление своей оси. Именно поэтому через 10 000 лет Полярная Звезда, по которой плавали и сегодня плавают мореходы еще с эпохи Великих географических открытий, уже не будет указателем Северного полюса. Полярная ось Земли к этому времени будет указывать на звезду Вега.
Это тоже имеет влияние на климат полярных и приполярных областей, которые с циклом в 25 000 лет получают разное количество тепла.
Но и это еще не все… но дальнейшие детали говорят только об одном – это очень сложная система, меняющая количество солнечной радиации, полученной планетой. Ну а про то, как и по каким циклам меняется интенсивность солнечного излучения, мы уже знаем (читали в этой же главе выше).
Что нужно понимать в вопросе "что и когда меняет климат на планете?"
Всеобъемлющего научного объяснения глобальным изменениям климата на Земле нет, есть различные теории и их комбинации.
Климатическая система Земли признана наукой самой сложной системой, которая только может быть в нашем мире. Климатическая система не только взаимодействует с внешними факторами (Солнце, Луна, другие планеты, космическое излучение, астероиды), но и производит самостоятельно (внутри себя) изменения и импульсы (взаимодействие атмосферы, океана, суши, тектоники, магнитного поля), способные изменить ее состояние.
СO2, пропорция которого в атмосфере не более 400 миллионных и молекула которого пропускает до 90 % инфракрасного (теплового) излучения Земли в космос, вряд ли является основным парниковым газом. Молекулы воды (облака) могут иметь гораздо большее влияние на радиационный форсаж планеты за счет своего альбедо и за счет отражения энергии на частоте, совпадающей с основной частотой земного излучения (10,5 микрометров). Этот феномен пока малоизучен.
Зато очевидно, что астрономические факторы, а особенно их сочетания, влияют на радиационный режим нашей планеты – весьма и весьма существенно.
Сравнения этих астрономических параметров и проверенных по ледовым дневникам климатических периодов Земли в прошлом подтверждают это влияние.
Например, 130 тысяч лет тому назад эксцентричность земной орбиты была 4 %, а наклон земной оси был более ярко выражен, чем сейчас (23 градуса 48 минут). Такое сочетание должно было дать Северному полушарию дополнительное солнечное излучение на 13 % больше, чем сейчас. Что говорят ледовые архивы? По данным ледникового бурения, температуры того периода были на 5 градусов выше, чем сегодня. И именно тогда и начался предпоследний межледниковый период, и климат был гораздо более теплый, чем сейчас.
Что мы наблюдаем через 10 тысяч лет, то есть 120 тысяч лет тому назад? Эксцентричность земной орбиты менее существенна, и угол наклона земной оси гораздо меньше (22 градуса). Северный полюс получает на 10 % тепла меньше, чем сегодня. В это время опять началось последнее оледенение.
Предположительно, климатический механизм работает следующим образом.
1) Переходя на циркулярную орбиту планета получает больше радиации, через несколько тысяч лет начинается потепление (межледниковый период).
2) Океану и вечной мерзлоте нужно примерно от 500 до тысячи лет, чтобы среагировать на астрономический радиационный форсаж:
a) океан, нагреваясь, выделяет в атмосферу большее количество растворенного в воде СO2 (эффект газированной воды) и пары воды.
b) вечная мерзлота, прогреваясь, выделяет метан и пары воды.
3) Атмосферный радиационный форсаж (парниковый эффект) усиливается, что заставляет ледники таять еще быстрее (правда, они и так бы растаяли, только чуть медленнее).
4) Потепление продолжается до очередного астрономического цикла.
Согласитесь, что по сравнению с этими факторами планетарного и космического масштаба влияние человека на климат, посредством выбросов СO2, и особенно "борьба с глобальным потеплением климата" (посредством сокращения этих выбросов) представляются детской войной в песочнице.
Мы забыли еще сказать, что антропогенные выбросы СO2 и других парниковых газов представляют примерно десятую часть парниковых газов, выбрасываемых ежегодно биосферой (леса, поля, животные, бактерии, океан).
Все вроде бы понятно, вот только ни денег, ни новой мировой политики на базе астрономической теории климата сделать нельзя, поэтому ее и не вспоминают.
А что сейчас у нас там с орбитой?
В 2005 году эксцентричность земной орбиты была 0,016.
В настоящее время изменение орбиты Земли находится в фазе перехода от эллиптической к циркулярной, то есть планета начинает получать больше солнечной радиации…
Глава 4. "О климатическом моделировании"
Давайте не будем забывать, что теория глобального потепления (вернее, ее урезанная часть, которую используют "борцы с изменением климата") – это всего лишь один из сценариев будущего, построенный на математической модели предсказания климата в зависимости от содержания СO2 в атмосфере.
Прочитав часть этой книги, мы уже понимаем, что СO2, а если быть точным, то только анторопогенная (произведенная человеком, а не природой) часть парниковых газов (то есть ее меньшая часть) является далеко не единственным и наверняка не основным фактором изменения температуры.
Тем не менее давайте разберем, как эта модель работает.
Начиная с 1958 года наблюдается постоянное возрастание пропорции СO2 в атмосфере: с 280 до 380 миллионных. Это увеличение признано считать следствием сжигания человеком угля и углеводородов, а также лесных пожаров.
Используя "ледниковые архивы" (анализы пузырьков воздуха в глубинных ледниковых пробах) было определено содержание СO2 и метана в атмосфере с начала XX века.
После чего были собраны (откуда смогли) данные по температуре на поверхности с конца XIX века.
Получили 3 кривые: содержание углекислого газа (СO2), содержание метана (СН4) и кривую температур:
• с конца XIX века средняя температура неуклонно росла (общее изменение 0,6 °C с 1980 по 2000 год) – так называемая кривая Джонса;
• именно в этот период произошло резкое увеличение содержания СO2 и метана в атмосфере.
Те же параметры были определены при анализе пузырьков воздуха в ледниковых слоях, соответствующих возрасту в сотни и в тысячи лет. Правды ради – методики анализа этих пузырьков и особенно содержания заключенного в них воздуха многими учеными критикуются, но это сейчас– не главное. Результаты показали, что изменения температуры и содержание СO2 коррелируются.
Из корреляции этих данных и был сделан вывод, что СO2 и СН4 и есть газы, вызывающие глобальное потепление путем усиления парникового эффекта.