Одной из наиболее интересных задач, стоящих перед спортивными физиологами, является выявление того, как различные двигательные единицы изменяются с возрастом и под влиянием различных режимов тренировки. Отмечено, что по мере старения человека число быстрых волокон в мышцах уменьшается. У двадцатилетних в среднем оно составляет 60 %, у шестидесятилетних – 45 %. Кроме этого, в процессе развития быстрые волокна также сильно истончаются с возрастом. Если за 40 лет жизни площадь поперечного сечения медленного волокна сокращается на 20 %, то быстрого-на 40 %. Это может быть связано со снижением физической активности пожилых людей и, особенно, с уменьшением нагрузок большой интенсивности, требующих активного участия быстрых двигательных мышечных единиц. В спортивной тренировке при использовании околопредельных и предельных нагрузок улучшается способность нервной системы вовлекать в деятельность все большее количество как быстрых, так и медленных единиц. При тренировке с невысокой интенсивностью в работе принимают участие в основном только медленные двигательные единицы. В таком случае, не упражняя группу быстро сокращающихся единиц, спортсмен существенно понижает свой скоростно-силовой потенциал.
В организме человека заложены определенные способности, как к проявлению выносливости, так и к проявлению быстроты, поэтому важно как можно раньше рассмотреть эти задатки и развить их в соответствии с биологическими закономерностями. Улучшение техники выполнения упражнений, повышение энергетического потенциала, совершенствование психологической подготовки – все это резервы, используя которые можно достичь высокого результата.
Применение различных методов тренировки и контроль за состоянием спортсмена наиболее эффективны, если они основываются на знаниях о реально протекающих в организме человека биологических процессах. Только в этом случае можно составлять оптимальные тренировочные планы и вести рациональную подготовку. Результативность в спринтерском беге зависит от того, насколько мощно спортсмен выполняет свои движения и как долго он может удерживать максимальную скорость в процессе бега по дистанции. Поэтому спортсмены и тренеры должны знать механизмы мышечного энергообеспечения и его энергоемкости.
В начале XX века физиологам стало известно, что основным источником энергии работающих мышц является аденозинтрифосфорная кислота (АТФ), расщепление которой на аденозиндифосфорную кислоту (АДФ) и неорганический фосфат позволяет выделять определенное количество энергии. Поскольку запасы АТФ в мышечных клетках невелики, для продолжения движений необходимо их постоянно восстанавливать. Восстановление АТФ в процессе мышечной деятельности осуществляется тремя путями, различными по скорости, продолжительности энергоотдачи, мощности и емкости.
Основным процессом ресинтеза АТФ является так называемый аэробный механизм, который осуществляется с использованием вдыхаемого кислорода. Движения невысокой интенсивности в спортивных упражнениях, где частота пульса не превышает 140–160 уд/мин, а также в повседневных действиях человека (ходьбе, выполнении несложной работы, напряжением мышц для поддержания позы и т. д.) обеспечиваются кислородом, доставляемым к работающим тканям током крови.
Исследования, проведенные со спортсменами высокой квалификации, показали, что, чем большее количество кислорода доставляется к работающим мышцам, тем выше, как правило, их спортивный результат в соревнованиях на выносливость. Максимальное потребление кислорода (МПК) определяется по количеству потребления О 2 во время работы со ступенчато повышающейся нагрузкой и выражается в количестве потребленного кислорода, приведенного к единице массы человека. У сильнейших лыжников и бегунов на длинные дистанции этот показатель достигает 90 мл/кг/мин. Спринтеры обычно характеризуются показателями МПК в пределах 50–60 мл/кг/мин. Может показаться, что для спринтера кислородный механизм энергообеспечения является весьма несущественным. И это действительно так, если рассматривать только соревновательную деятельность бегунов на короткие дистанции. Например, в беге на 100 м спортсмен выполняет 13–19 неглубоких вдохов.
Известно, что при самой интенсивной деятельности кровь в организме человека успевает делать полный кругооборот лишь за 8 секунд. С выстрелом стартера бегуны мгновенно включают в работу значительное число мощных мышечных групп, для функционирования которых необходимо столько кислорода, сколько не может гемоглобин крови доставить в работающие мышцы. Поток крови с требуемым окислителем достигает своей конечной цели лишь через 4–5 секунд с момента старта, спортсмены же к этому времени преодолевают половину дистанции. И все же показатель максимального потребления кислорода является достаточно важным для бегунов на короткие дистанции. Высокое МПК позволяет, прежде всего, переносить большие тренировочные нагрузки, без чего невозможно достижение высокого результата.
Чем выше аэробные возможности спортсменов, тем скорее у них протекают процессы восстановления. Это дает возможность прийти довольно свежим к следующему кругу соревнований или чаще использовать интенсивные тренировочные занятия. По мере увеличения длины спринтерской дистанции повышается значение кислородного механизма энергообеспечения работающих мышц. По сравнению с бегом на 100 м вклад аэробного процесса в беге на 200 м в общих энерготратах возрастает в 2,5 раза, а в беге на 400 м – в 5 раз.
Что же лимитирует наши аэробные возможности? Прежде всего – это размеры сердца. У сильнейших стайеров объем сердца примерно составляет 1100 см , у спринтеров – 900 см . Таким образом, при равном числе сердечных сокращений количество крови, отправляемой к работающим мышцам, у бегунов на короткие дистанции значительно меньше. Важными факторами, обеспечивающими механизм кислородного энергообеспечения, также являются мощность сердечной мышцы, скорость кровотока, объем циркулирующей крови, ее способность связывать большее количество кислорода, возможности утилизации кислорода работающими мышцами.
Из практики тренировки известно, что развитие аэробных возможностей наиболее эффективно при равномерной тренировочной нагрузке с интенсивностью, при которой частота пульса находится в пределах 150–165 уд/мин.
Конечный пункт доставки кислорода – мышечное волокно. От сердца обогащенная кровь сначала по аорте (диаметром 4 см), затем по более мелким сосудам доставляется к работающим мышцам, где микрокапилляры (их число составляет до 2000 на 1 мм мышечной ткани) осуществляют окисление продукта мышечного метаболизма. При выполнении длительных равномерных тренировочных нагрузок значительно расширяется сеть микро капилляров (общее их количество может возрасти на 100 %), а также повышаются возможности кардио-респираторной системы.
При проведении повторной тренировки, когда пробежки чередуются с паузами отдыха, в основном совершенствуются возможности сердечнососудистой системы (увеличивается мощность сердечного выброса). Как показали исследования, оптимальными в данном случае являются отрезки бега в 200 м со скоростью 90 % от максимальной и паузами отдыха, продолжающимися до тех пор, пока частота пульса не снизится до 120 уд/мин. Таким образом, аэробный механизм энергообеспечения, являясь существенным для спринтера, все же не решает основных задач энергообеспечения при работе с максимальной мощностью.
В беге на короткие дистанции основные энергетические процессы происходят без участия кислорода; их называют анаэробными. Мощность таких процессов по сравнению с аэробными выше в 2–4,5 раза.
При недостатке кислорода ресинтез АТФ из АДФ происходит за счет распада креатин фосфата (КРФ) или ферментативного расщепления глюкозы или гликогена до молочной кислоты. Соответственно эти процессы называются анаэробным алактатным и анаэробным гликоли-тическим.
Наиболее мощным источником энергии в организме является распад креатин фосфата, что позволяет со старта развить самую высокую скорость бега, включаясь одновременно с началом работы и достигая максимальных величин на 2-3-й с работы. Из-за малой емкости этого источника энергии обеспечение энергетической потребности мышц КРФ осуществляется лишь несколько секунд, после чего начинает активно разворачиваться другой анаэробный процесс – гликолитический.
При интенсивной мышечной деятельности процессы энергообеспечения выступают не как последовательно включающиеся механизмы, когда по мере исчерпания одного источника энергии включается другой, а как суммарно функционирующие системы с постоянно меняющимися величинами (Таблица 15).
Таблица 15
Затраты отдельных процессов энергообеспечения на различные спринтерские дистанции (Н.И. Волков)
Из приведенных данных можно сделать вывод, что бег с максимальной скоростью на дистанцию вдвое большую не требует двойного расхода энергии. Энергетическая стоимость 100-метрового бега превышает расходы на 200 м лишь на 40 %. Очевидно, наибольшие энерготраты у спортсмена наблюдаются в стартовом разгоне, который занимает в беге на 100 м треть дистанции, но по энергетике составляет более 50 % всей работы. Таким образом, поддержание высокой скорости бега с энергетических позиций не является достаточно существенной проблемой, потому что для сохранения инерции движения необходимы расходы на преодоление сопротивления воздуха, перемещения тела спортсмена по пологой траектории в каждой фазе полета, а также на внутреннюю работу – разгон и остановку маховой ноги, рук, поддержание оптимальной позы.
Снижение скорости на спринтерских дистанциях объясняется постепенным расходом резервов анаэробного обеспечения и накоплением в организме молочной кислоты (лактата). Значительное повышение концентрации этого продукта энергетического обмена приводит к мобилизации защитных механизмов, деятельность которых проявляется в нарушении координации движений, мышечной слабости и судорогах.
Основной продукт распада гликогена – молочная кислота выводится из работающих мышц в процессе отдыха. Эксперименты показали, что при выполнении длинных пробежек с высокой скоростью в организме спортсмена образуется 70-100 г молочной кислоты. В процессе восстановления наш организм способен выводить примерно 1 г лактата в 1 мин, таким образом, полное восстановление может занимать 1,5 ч. При выполнении физической нагрузки невысокой интенсивности с частотой пульса примерно 100–110 уд/мин в процессе отдыха скорость распада лактата возрастет в 4 и более раз, а полное восстановление наступит через 20–25 мин. Причем некоторые исследования свидетельствуют о том. Что при работе низкой интенсивности (медленный бег) процесс восстановления протекает активнее, нежели неподвижное состояние. Из приведенных результатов физиологических экспериментов очевидно, что каждое тренировочное занятие или соревновательный забег должны обязательно завершаться не менее, чем получасовой заминкой, в которой медленный бег чередуется с упражнениями на гибкость.
Если рассматривать тренировку спринтера с позиций энергетики, то она должна вестись по следующим основным направлениям:
– повышение количества энергетических субстратов в основном алактатно-анаэробного обеспечения мышечной деятельности, что способствует повышению мощности работы на стартовом отрезке и увеличению максимальной дистанционной скорости. Как показали исследования, основным методом увеличения мощности анаэробных энергоресурсов является повторная работа на отрезках в 30–50 м, пробегаемых с максимальной скоростью. При этом длительность интервалов отдыха должна составлять 3–5 мин, а количество повторений не более 5–6 раз;
– увеличение мощности гликолитического механизма энергообеспечения и нарастание емкости так называемых буферных систем, которые нейтрализуют выделяющиеся продукты гликолиза. В крови человека эту функцию выполняют разнообразные гликолизные вещества (гемоглобин, бикарбонаты, фосфаты и др.), число которых регламентирует способность поддерживать высокую дистанционную скорость в конце дистанции. В данном случае тренировка обычно состоит из пробегания отрезков длиной 150 м и более с относительно короткими интервалами отдыха.
Наблюдение за системой тренировки бегунов на короткие дистанции свидетельствует о том, что, как правило, спринтеры показывают на соревнованиях более высокие результаты, чем на тренировочных занятиях. Соревнование – мощный раздражитель, мобилизующий деятельность нервной системы, которая стимулирует выброс в кровь спортсмена специфических гормонов – адреналина и норадреналина. Появление этих гормонов в избыточных количествах ускоряет распад гликогена в мышцах, повышает давление крови и возбудимость нервной системы, улучшает кровоснабжение и координацию движений. Отмечено, что уже за два дня до соревнований происходит активация симпатоадреналовой системы и количество адреналина и норадреналина превышает обычный уровень примерно в 2 раза. Во время соревнований значение этого показателя возрастает в 4–5 раз.
Гормональный статус каждого человека является достаточно консервативным и определяется врожденными признаками. Недостаток, как и избыток, выброса гормонов, не позволяет спортсмену показывать высокие результаты. В первом случае бегун, как правило, незначительно превосходит свои тренировочные результаты, а во втором, вследствие чрезмерного возбуждения, излишне закрепощается и снижает скорость бега.
В практической работе использование данных изменения параметров внутренней среды организма может оказывать очень хорошую помощь в планировании нагрузок и оценке состояния спортсмена. Изменения кислотно-щелочного равновесия (КЩР), например, до и после тренировочной нагрузки позволяют выявить реакцию спринтера на предложенную работу, характеристики его восстановительных процессов, количество повторений, необходимых для достижения наибольших сдвигов. Динамические наблюдения за бегунами на короткие дистанции с использованием данных КЩР помогают тренеру оценивать эффективность предлагаемых тренировочных методов, а также разрабатывать индивидуальные модели тренировочных и предсоревновательных циклов подготовки.
Некоторые рекомендации по питанию бегунов на короткие дистанции
Физиологическое обоснование тренировки в спринтерском беге охватывает не только описание внутренних процессов энергообеспечения максимальной мощности, но и проблемы восстановления энергоресурсов. Питание является одним из наиболее универсальных средств восстановления и повышения работоспособности, выполняя две чрезвычайно важные функции в организме: энергетическую (обеспечение энергией) и пластическую (регенерация разрушенных и создание новых клеток, тканей). Регенерация в организме человека имеет особое значение, поскольку все химические соединения существуют определенный срок, измеряемый "полупериодом жизни", т. е. тем временем, за которое данное вещество наполовину обновит свой состав. Например, этот срок для белков печени равен 5–6 суткам, сократительных белков мышц – около 30 суток, гликогена – от 12 часов до суток. Естественно поэтому, что рациональное питание может значительно улучшать состояние организма спортсмена, оптимизируя протекающие в нем процессы, и наоборот, неправильное питание может вызывать серьезные нарушения в организме, вплоть до возникновения заболеваний и травм.
Для нормальной работы организма необходимо, чтобы восполнение энергии примерно соответствовало ее суточному расходу. В связи с этим первостепенное значение для оценки энергетического баланса приобретает динамика веса тела. У здорового человека вес тела меняется главным образом за счет изменения в организме количества жировой ткани, непосредственно связанной с энергетическим обменом. При избыточном питании продукты, содержащие избыток калорий, превращаются в жир и откладываются в виде жировой ткани, отчего вес увеличивается. При энергетическом балансе количество поступающей в организм с пищевыми веществами энергии соответствует расходуемой, поэтому вес тела стабилен. Следовательно, регулярное взвешивание (1–2 раза в неделю) в одинаковых условиях будет вполне адекватным показателем баланса энергообеспечения и энергетических трат.
Часто за тренировкой молодых атлетов внимательно следят родители, но многие из них не знают требований, предъявляемых к питанию спортсменов вообще и молодых атлетов в частности. Важно снабдить их определенными знаниями, чтобы они могли привить своим подопечным хорошие привычки. Вообще убеждать спортсменов и родителей в необходимости рационального питания можно, предложив им сравнить, как работает автомобиль на бензине обычном и высшего качества. Думаю, что большинство из них имели возможность такого сравнения и практические наблюдения позволят им более серьезно отнестись к этой далеко не последней составляющей тренировочного процесса.
Для покрытия расходов, связанных с выполнением тренировочной работы, бегуну на короткие дистанции необходим суточный рацион в 4000–4500 ккал. Для пластических и метаболических (обменных) процессов важнейшим является качественный состав пищи. По химическому составу любая пища может быть разделена на основные компоненты – белки, углеводы, жиры (липиды), витамины, минеральные соли и воду, пприсутствующие в ней в различных соотношениях.
Для нормального состояния белкового обмена должен сохраняться белковый баланс, т. е. количество поступающих в организм белков должно соответствовать количеству разрушенных. Бегун на короткие дистанции должен получать в сутки 2–2,5 г белка на 1 кг веса тела.
Пластическая роль углеводов состоит в том, что, соединяясь с белками и липидами, они способствуют выполнению последними их функций. Углеводы входят также в структуру АТФ, нуклеиновых кислот, гормонов, играют важнейшую роль в таких процессах, как проницаемость тканей и иммунитет. Однако основная функция углеводов – энергообеспечение.
Из пищевых продуктов наибольшим содержанием глюкозы отличается такой ценнейший для восстановления продукт, как мед (в нем содержатся также биологически активные вещества).
Витамины – вещества различных классов химических соединений, которые необходимы для нормальной жизнедеятельности организма в микроскопических количествах и которые не синтезируются в организме человека.
Установлено, что чем больше выполняемая атлетом работа, тем больше ему требуется витаминов. При отягощении условий тренировки, стрессах потребность спортсмена в некоторых витаминах может возрастать в 2–3 раза по сравнению с лицами, не занимающимися спортом.