Биологическая химия - Владимир Лелевич 8 стр.


Аминокислота, присоединяясь к тРНК, в дальнейшем не определяет специфических свойств аа-тРНК, её структуру не узнает ни рибосома, ни мРНК. И участие конкретной аминокислоты в синтезе белка зависит только от структуры тРНК, а точнее, от комплементарного взаимодействия антикодона аминоацил-тРНК с кодоном мРНК. Иными словами, молекулы тРНК в синтезе белка играют роль адапторов, т.е. приспособлений, при помощи которых аминокислоты включаются в определенном порядке в растущую полипептидную цепь.

Синтез белка у эукариот

В ходе синтеза белка считывание информации с мРНК идет в направлении от 5'- к 3'-концу, обеспечивая синтез пептида от N- к C-концу. События на рибосоме включают этапы инициации, элонгации и терминации (Рис.7.1.).

Инициация

Инициация трансляции представляет собой процесс, в ходе которого происходит образование комплекса, включающего инициирующую метионил-тРНК (мет-тРНКi), мРНК и рибосому. В этом процессе участвуют не менее 10 факторов инициации (eIF). Первоначально 40S субъединица рибосомы соединяется с фактором инициации, который препятствует её связыванию с 60 S субъединицей, но стимулирует объединение с мет-тРНКi, ГТФ и другим фактором инициации. Этот сложный комплекс связывается с 5'-концом мРНК при участии нескольких eIF, один из которых присоединяется к кэп-участку. Прикрепившись к мРНК, 40S субъединица начинает скользить по некодирующей части мРНК до тех пор, пока не достигнет инициирующего кодона АУГ кодирующей нуклеотидной последовательности. Скольжение 40S субъединицы по мРНК сопровождается гидролизом АТФ, энергия которого затрачивается на преодоление участков спирализации в нетранслируемой части мРНК.

Достигнув начала кодирующей последовательности мРНК, 40S субъединица останавливается и связывается с другими факторами инициации, ускоряющими присоединение 60S субъединицы и образование 80S рибосомы за счет гидролиза ГТФ. При этом формируются А (аминоацильный) и Р (пептидильный) центры рибосомы, причем в Р-центре оказывается кодон АУГ с присоединенной к нему мет-тРНКi.

Элонгация.

На данном этапе полипептидная цепь удлиняется за счет ковалентного присоединения последующих аминокислот, каждая из которых доставляется к рибосоме и встраивается в определенное положение с помощью соответствующей тРНК.

Это самый продолжительный этап белкового синтеза. В начале данного этапа в Р-центре находится инициирующий кодон с присоединенной к нему мет-тРНКi, а в А-центре – триплет, кодирующий включение следующей аминокислоты синтезируемого белка. Включение каждой аминокислоты происходит в 3 стадии.

аа-тРНК следующей входящей в белок аминокислоты связывается с А-центром рибосомы. Включение аа-тРНК в рибосому происходит за счет энергии гидролиза ГТФ при участии белкового фактора элонгации.

Метионин от инициаторной метионил-тРНК, находящейся в Р-центре, присоединяется к α-NH2-группе аминоацильного остатка аа-тРНК А-центра с образованием пептидной связи. Эта реакция называется реакцией транспептидации и катализируется 28S рРНК большой субъединицы. Это один из примеров РНК, обладающих свойствами ферментов (рибозимов).

Удлиненная на один аминокислотный остаток дипептидил-тРНК перемещается из А-центра в Р-центр в результате транслокации рибосомы. Процесс происходит за счет энергии гидролиза ГТФ и с участием ещё одного фактора элонгации. Свободная от метионина тРНКiMet покидает рибосому, а в область А-центра попадает следующий кодон.

По завершении третьей стадии элонгации рибосома в Р-центре имеет дипептидил-тРНК, а в А-центр попадает триплет, кодирующий включение в полипептидную цепь новой аминокислоты. Начинается следующий цикл элонгации, в ходе которого на рибосоме снова проходят описанные выше события. Повторение этих циклов по числу смысловых кодонов мРНК завершает весь этап элонгации.

Терминация

Терминация трансляции наступает в том случае, когда в А-центр рибосомы попадает один из стоп-кодонов (УАГ, УАА, УГА). Для этих кодонов нет соответствующих тРНК. Вместо них к рибосоме присоединяются 2 белковых фактора терминации (рилизинг-фактора). Один из них катализирует отщепление синтезированного пептида от тРНК, другой за счет энергии гидролиза ГТФ вызывает диссоциацию рибосомы на субъединицы.

Все освободившиеся компоненты белоксинтезирующей системы используются вновь в очередном цикле. Реакции белкового синтеза протекают по конвейерному типу, они синхронизированы, что обеспечивает максимальную скорость и эффективность процесса.

Почти всегда на одной молекуле мРНК трансляцию осуществляют несколько рибосом, образуя полирибосомы или полисомы. Каждая рибосома в полисоме способна синтезировать полную полипептидную цепь. Образование групп рибосом повыщает эффективность использования мРНК, поскольку на ней может одновременно синтезироваться несколько идентичных полипептидных цепей. Полисомы находятся или в свободном состояни, или в тесной связи с мембранами эндоплазматической сети. мРНК, кодирующие внутриклеточные белки, содержатся преимущественно в свободных полисомах, а мРНК, кодирующие секреторные белки, – в мембраносвязанных.

Посттрансляционные изменения белков

Многие белки синтезируются в неактивном виде (предшественники) и после схождения с рибосом подвергаются постсинтетическим структурным модификациям. Эти конформационные и структурные изменения полипептидных цепей получили название посттрансляционных изменений. Они включают удаление части полипептидной цепи (частичный протеолиз), ковалентное присоединение одного или нескольких низкомолекулярных лигандов, связывание между собой субъединиц олигомерного белка, приобретение белком нативной конформации (фолдинг).

При частичном протеолизе, например, неактивные предшественники секретируемых ферментов – зимогены – образуют активный фермент после расщепления по определенным участкам молекулы. Наглядным примером последовательного протеолиза служит и образование активных форм инсулина или глюкагона из препрогормонов.

В ходе ковалентных модификаций структурные белки и ферменты могут активироваться или инактивироваться в результате присоединения различных химических групп: фосфатных, ацильных, метильных, олигосахаридных и др. Многочисленным модификациям подвергаются боковые радикалы некоторых аминокислот: в тиреоглобулине йодируются остатки тирозина, в факторах свертывания крови карбоксилируются остатки глутамата, в цепях тропоколлагена гидроксилируются остатки пролина и лизина.

У некоторых белков на N-конце имеются короткие последовательности гидрофобных аминокислотных остатков, которые называют сигнальными последовательностями. Эти участки играют важную роль в транспорте белков через мембраны. В процессе переноса через мембрану сигнальная последовательность отщепляется сигнальной пептидазой. В итоге белок приобретает функциональную активность, оказавшись в соответствующей органелле или вне клетки.

Существование посттрансляционной модификации расширяет возможности клеток в регуляции метаболизма. Изменения количества или активности ферментов, участвующих в модификации белков, приводят к снижению или увеличению концентрации последних, что отражается на скорости соответствующих процессов.

Регуляция синтеза белка

Соматические клетки всех тканей и органов многоклеточного организма содержат одинаковую генетическую информацию, но отличаются друг от друга по содержанию тех или иных белков. Для эритроцитов, например, характерно высокое содержание гемоглобина, для клеток соединительной ткани – коллагена, клетки поджелудочной железы вырабатывают много ферментов. В отдельных клетках, тканях и органах содержание разных белков меняется онтогенез. Все это свидетельствует о том, что в живых организмах существуют механизмы, регулирующие белковый синтез. Они функционируют под действием внутренних и внешних факторов на каждой из стадий сложного процесса синтеза белка. Количество протеинов может изменяться в результате увеличения числа некоторых генов, регуляции на стадии транскрипции, процессинга мРНК. Скорость белкового синтеза определяется также и временем жизни мРНК, регуляцией синтеза на уровне трансляции и посттрансляционной модификации белков.

Регуляция на самых ранних этапах (на уровне экспрессии генов) является наиболее выгодной и поэтому широко встречается у эукариотических организмов. На экспрессию генов у эукариот влияет целый ряд факторов.

Организация хроматина и доступность генов: в ядрах дифференцированных клеток хроматин имеет такую укладку, что только небольшое число генов доступно для транскрипции. Различают участки гетерохроматина, в которых ДНК упакована очень компактно и для транскрипции недоступна, и участки эухроматина, имеющие более рыхлую укладку и способные связывать РНК-полимеразу. В разных типах клеток в область эухроматина попадают разные гены. Это ведет к тому, что в разных тканях транскрибируются разные участки хроматина.

Изменение количества генов: амплификация (увеличение числа) генов при необходимости увеличения синтеза определенного генного продукта; утрата генетического материала (процесс, происходящий при созревании некоторых типов клеток, например, эритроцитов).

Перестройка генов или генетичесая рекомбинация: перемещение генов между хромосомами или внутри одной хромосомы, объединение генов с образованием измененной хромосомы, которая после таких изменений способна к репликации и транскрипции.

Регуляция транскрипции (см. лекцию № 6).

Существенное значение в обеспечении разнообразия белков играет посттранскрипционный процессинг РНК. Основные способы такой регуляции – альтернативный сплайсинг и изменение стабильности РНК.

Известны и некоторые случаи регуляции количества и разнообразия белков путем изменения скорости процесса их трансляции. Наиболее изученный пример – синтез белков в ретикулоцитах. Известно, что на этом уровне дифференцировки кроветворные клетки лишены ядра, а следовательно и ДНК. Регуляция синтеза белка-глобина осуществляется только на уровне трансляции и зависит от содержания гема в клетке.

Ингибиторы матричных биосинтезов

Существует большая группа веществ, ингибирующих синтез ДНК, РНК или белков. Некоторые из них нашли применение в медицине для лечения инфекционных болезней и опухолевых заболеваний, а другие являются для человека сильнейшими токсинами. К последним можно отнести токсин бледной поганки α-аманитин, который является ингибитором эукариотических РНК-полимераз.

Действие ингибиторов матричных биосинтезов как лекарственных препаратов основано на:

1. модификации матриц (ДНК или РНК);

2. белоксинтезирующего аппарата (рибосом);

3. инактивации ферментов.

Центральное место среди них принадлежит антибиотикам – разнообразным по химическому строению органическим соединениям, синтезируемым микроорганизмами. Краткие сведения об антибиотиках, ингибирующих матричные синтезы, приведены в таблице 7.2.

Таблица 7.2. Антибиотики – ингибируюшие матричные биосинтезы

АнтибиотикиМеханизм действия
Ингибиторы репликации
МелфаланАлкилирует ДНК
Ингибиторы репликации и транскрипции
Актиномицин DВстраиваются между парами оснований ДНК, блокируют синтез ДНК и РНК у про- и эукариот
Дауномицин
Доксорубицин
НовобиоцинИнгибируют ДНК-топоизомеразу, ответственную за суперспирализацию ДНК
Номермицин
Ингибиторы транскрипции
РифампицинСвязываются с бактериальной РНК-полимеразой
Ингибиторы трансляции
ТетрациклиныИнгибируют элонгацию: связываются с 30S субъединицей рибосомы и блокируют присоединение аа-тРНК в А-центр
ЛевомицетинПрисоединяется к 50S субъединице рибосомы и ингибирует пептидилтрансферазную активность
ЭритромицинПрисоединяется к 50S субъединице рибосомы и ингибирует транслокацию
СтрептомицинИнгибирует инициацию трансляции.Связывается с 50S субъединицей рибосомы, вызывает ошибки в прочтении информации, закодированной в мРНК

Использование ДНК-технологий в медицине

Достижения в области молекулярной биологии существенно повлияли на современную медицину: они не только углубили знания о причинах многих болезней, но и способствовали разработке новых подходов в их диагностике и лечению.

Для выявления дефектов в структуре ДНК она должна быть выделена из биологического материала и "скопирована" (наработана) в количествах, достаточных для исследования. Для генно-терапевтических работ необходимо выделение нормальных генов и введение их в дефектные клетки таким образом, чтобы они экспрессировались, позволяя восстановить здоровье пациента.

Выделение ДНК включает быстрый лизис клеток, удаление фрагментов клеточных органелл и мембран с помощью центрифугирования, разрушение белков протеазами, экстрагирование ДНК с последующим её осаждением. В ходе выделения получают очень большие молекулы, их дополнительно фрагментируют с помощью рестриктаз. Образующиеся фрагменты разделяют методом электрофореза. Количество и длина получающихся фрагментов, и соответственно, расположение полос на электрофореграмме уникально и специфично для каждого человека.

Идентификация характерных последовательностей проводится методом блот-гибридизации по Саузерну. Фрагменты ДНК подвергают денатурации и осуществляют перенос (блоттинг) на плотный носитель (фильтр или мембрану). Фиксированную на фильтре ДНК гибридизуют с небольшими фрагментами ДНК или РНК, содержащими радиоактивную (флюоресцентную или др.) метку. Такие фрагменты называют ДНК- или РНК-зондами. Если в исследуемом образце есть последовательности, комплементарные последовательностям зонда, то гибридизацию можно определить визуально или с помощью специальных приборов. Метод применяется для диагностики инфекционных заболеваний, наследственных дефектов, установления экспрессии тех или иных генов.

Секвенирование (определение первичной структуры) ДНК проводится химическим или энзиматическим методом. Метод Маскама и Гилберта (химический) основан на химической деградации ДНК. Суть метода сводится к следующему: один из концов фрагмента ДНК метят с помощью радиоактивной или флюоресцентной метки. Препарат меченой ДНК делят на четыре порции и каждую из них обрабатывают реагентом, разрушающим одно или два из четырех оснований, причем условия реакции подбирают таким образом, чтобы на каждую молекулу ДНК приходилось лишь несколько повреждений. В результате получается набор меченых фрагментов, длины которых определяются расстоянием от разрушенного основания до конца молекулы. Фрагменты, образовавшиеся во всех четырех реакциях, подвергают электрофорезу в четырех соседних дорожках; затем проводят их идентификацию. По положению отпечатков можно определить, на каком расстоянии от меченого конца находилось разрушенное основание, а зная это основание – его положение. Так набор полос определяет нуклеотидную последовательность ДНК.

Метод Сэнгера (ферментативный) основан на моделировании ДНК-полимеразной реакции, где исследуемая молекула ДНК используется в качестве матрицы. В реакционную смесь добавляют дидезоксинуклеотиды (ОН-группа в 3'-положении пентозы отсутствует). ДНК-полимераза включает эти предшественники в ДНК. Однако, включившись в ДНК, модифицированный нуклеотид не может образовать фосфодиэфирную связь со следующим дезоксирибонуклеотидом. В результате элонгация данной цепи останавливается в том месте, где в ДНК включился дидезоксирибонуклеотид. Реакция проводится одновременно в четырех отдельных пробирках, каждая из которых содержит один из четырех дидезоксинуклеотидов и все 4 дезоксинуклеотидтрифосфата (к ним, как правило присоединяют радиоактивную или флюоресцентную метку). В каждой из пробирок образуется набор меченых фрагментов разной длины. Длина их зависит от того, в каком месте в цепь включен дефектный нуклеотид. Полученные меченые фрагменты ДНК разделяют в полиакриламидном геле с точностью до одного нуклеотида, проводят идентификацию и по картине распределения фрагментов в четырех пробах устанавливают нуклеотидную последовательность ДНК.

Назад Дальше